Exercise MY-101

Computing an equilibrium quantity with a subsidy

The Economic Skills Project

1 Problem

Problem

Given the market willingness to pay and willingness to accept curves below, compute the equilibrium quantity when a subsidy of \$200 per unit is imposed.

- $WTP = 1500 2Q^{D}$
- $WTA = 3Q^{S}$

2 Answer

Answer

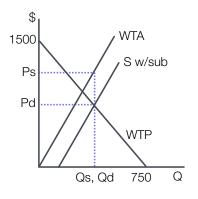
Here's the numerical solution:

• Q = 340

3 Method

Solution method

Here's one approach:


- 1. Draw the graph.
- 2. Solve for the demand and supply equations.
- 3. Solve for the equilibrium Q using $P^d + S = P^s$.
- 4. Check the result.

4 Solution

4.1 Step 1

Draw the graph

Here's how it looks:

4.2 Step 2

Solve for the demand and supply equations

Solving for demand, Q^{D} , as a function of the buyer price P^{d} :

- $P^{d} = WTP = 1500 2Q^{D}$
- $2Q^{D} = 1500 P^{d}$
- $Q^{D} = \frac{1}{2} (1500 P^{d}) = 750 \frac{1}{2}P^{d}$

Solving for supply, Q^S, as a function of the seller price P^s:

•
$$P^s = WTA = 3Q^s$$

•
$$Q^S = \frac{1}{3}P^s$$

4.3 Step 3

Solve for the equilibrium Q using $\mathsf{P}^d + \mathsf{S} = \mathsf{P}^s$

The equilibrium has $Q^{D} = Q^{S}$ and $P^{d} + S = P^{s}$. Using those two equations and setting S = \$200:

- $Q^D = Q^S$
- $750 \frac{1}{2}P^d = \frac{1}{3}P^s$
- $750 \frac{1}{2}P^d = \frac{1}{3}(P^d + S)$
- $750 \frac{1}{3}S = \frac{5}{6}P^d$
- $P^d = \frac{6}{5} \left(750 \frac{1}{3} \cdot 200 \right) = 820$
- $Q^{D} = 750 \frac{1}{2}P^{d} = 340$

4.4 Step 4

Check the result

To check the result, compute P^s and use the supply equation. The quantity should be the same.

- $P^s = P^d + S$
- $P^s = 820 + 200 = 1020$
- $Q^{s} = \frac{1}{3}P^{s}$
- $Q^{S} = \frac{1}{3} \cdot 1020$
- $Q^{S} = 340$

Everything checks - done!

Revised 2019-03-30