Peter J. Wilcoxen Economics 320K, 359M Department of Economics The University of Texas at Austin

Answers to Math Exercise

The answers to the math exercise are shown below. Each answer shows all steps leading to the solution, which is marked with "(*)".

Basic Algebra

Solve the following expression for y as a function of x:

$$y = 2y - 3x^2$$

Answer:

$$-y = -3x^2$$
$$y = 3x^2 (*)$$

Systems of Equations

Answer:

Solve the following two equations for the values of x and y:

$$2x + 3y = 4$$
$$x + 2y = 5$$
$$x = 5 - 2y$$

$$2(5-2y) + 3y = 4$$
$$10 - 4y + 3y = 4$$
$$6 = y$$

$$x = 5 - 2(6) = -7$$
$$x = -7, y = 6 (*)$$

Differentiation

Differentiate the following function with respect to x:

$$y(x) = ax^3 + \frac{b}{x}$$

Answer:

$$\frac{dy}{dx} = 3ax^2 - \frac{b}{x^2} \quad (*)$$

Maximization

Using calculus, find the value of x that maximizes the following function:

$$U(x) = 10 - (x - 5)^2$$

Answer:

$$\frac{dU}{dx} = 0.$$
$$\frac{dU}{dx} = -2(x-5)$$
$$0 = -2x + 10$$
$$x = 5 (*)$$

Partial Differentiation

Solve for the partial derivatives of the following function with respect to x and y:

$$U(x, y) = Ax^{\alpha}y^{\beta}$$

Answer:

$$\frac{\partial U}{\partial x} = \alpha A x^{(\alpha-1)} y^{\beta} (*)$$
$$\frac{\partial U}{\partial y} = \beta A x^{\alpha} y^{(\beta-1)} (*)$$

Total Differentiation

Write down the total differential of the following function:

$$U(x,y) = \frac{1}{3}(xy)^3$$

Answer:

$$dU = (xy)^{2}(ydx + xdy)$$
$$dU = x^{2}y^{3}dx + x^{3}y^{2}dy (*)$$

Graphing

Using at least four points per curve, plot the following function for U=4 and U=9 (two curves) in the quadrant where x and y are both positive:

Answer:

$$U(x, y) = xy^2$$

Inequalities

Sketch the region of the positive quadrant containing points satisfying the following inequality:

 $2x + y \le 10$

Answer:

See Figure 2

Figure 2

Figure 1

Constrained Maximization (OPTIONAL)

Find the values of x and y that maximize the function:

$$f(x, y) = xy$$

subject to the constraint:

$$x + y = m$$

where m is a constant.

Answer:

$$y = m - x$$

$$f = x(m - x) = mx - x^{2}$$

$$\frac{df}{dx} = m - 2x$$

$$0 = m - 2x$$

$$x = \frac{m}{2}$$

$$y = m - \frac{m}{2} = \frac{m}{2}$$

$$x = \frac{m}{2}, \quad y = \frac{m}{2} \quad (*)$$

Integration (OPTIONAL)

Integrate the following expression with respect to t, where A and r are constants:

$$\int_0^\infty Ae^{-rt}dt$$

Answer:

$$= \frac{1}{-r}Ae^{-rt} \Big|_{0}^{\infty}$$
$$= \lim_{t \to \infty} \frac{1}{-r}Ae^{-rt} - \frac{1}{-r}Ae^{0}$$
$$= \frac{A}{r} (*)$$