Answers to Math Exercise

The answers to the math exercise are shown below. Each answer shows all steps leading to the solution, which is marked with "(*)".

Basic Algebra

Solve the following expression for y as a function of x :

$$
y=2 y-3 x^{2}
$$

Answer:

$$
\begin{aligned}
& -y=-3 x^{2} \\
& y=3 x^{2}(*)
\end{aligned}
$$

Systems of Equations

Solve the following two equations for the values of x and y :

$$
\begin{gathered}
2 x+3 y=4 \\
x+2 y=5
\end{gathered}
$$

Answer:

$$
\begin{gathered}
x=5-2 y \\
2(5-2 y)+3 y=4 \\
10-4 y+3 y=4 \\
6=y \\
x=5-2(6)=-7 \\
x=-7, y=6(*)
\end{gathered}
$$

Differentiation

Differentiate the following function with respect to x :

$$
y(x)=a x^{3}+\frac{b}{x}
$$

Answer:

$$
\frac{d y}{d x}=3 a x^{2}-\frac{b}{x^{2}}\left({ }^{*}\right)
$$

Maximization

Using calculus, find the value of x that maximizes the following function:

$$
U(x)=10-(x-5)^{2}
$$

Answer:

$$
\begin{gathered}
\frac{d U}{d x}=0 . \\
\frac{d U}{d x}=-2(x-5) \\
0=-2 x+10 \\
x=5(*)
\end{gathered}
$$

Partial Differentiation

Solve for the partial derivatives of the following function with respect to x and y :

$$
U(x, y)=A x^{\alpha} y^{\beta}
$$

Answer:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=\alpha A x^{(\alpha-1) y^{\beta}}(*) \\
& \frac{\partial U}{\partial y}=\beta A x^{\alpha} y^{(\beta-1)}(*)
\end{aligned}
$$

Total Differentiation

Write down the total differential of the following function:

$$
U(x, y)=\frac{1}{3}(x y)^{3}
$$

Answer:

$$
\begin{gathered}
d U=(x y)^{2}(y d x+x d y) \\
d U=x^{2} y^{3} d x+x^{3} y^{2} d y(*)
\end{gathered}
$$

Graphing

Using at least four points per curve, plot the following function for $\mathrm{U}=4$ and $\mathrm{U}=9$ (two curves) in the quadrant where x and y are both positive:

$$
U(x, y)=x y^{2}
$$

Answer:

See Figure 1

Inequalities

Sketch the region of the positive quadrant containing points satisfying the following inequality:

$$
2 x+y \leq 10
$$

Answer:

See Figure 2

Figure 1

Figure 2

Constrained Maximization (OPTIONAL)

Find the values of x and y that maximize the function:

$$
f(x, y)=x y
$$

subject to the constraint:

$$
x+y=m
$$

where m is a constant.
Answer:

$$
\begin{gathered}
y=m-x \\
f=x(m-x)=m x-x^{2} \\
\frac{d f}{d x}=m-2 x \\
0=m-2 x \\
x=\frac{m}{2} \\
y=m-\frac{m}{2}=\frac{m}{2} \\
x=\frac{m}{2}, \quad y=\frac{m}{2}(*)
\end{gathered}
$$

Integration (OPTIONAL)

Integrate the following expression with respect to t, where A and r are constants:

$$
\int_{0}^{\infty} A e^{-r t} d t
$$

Answer:

$$
\begin{gathered}
=\left.\frac{1}{-r} A e^{-r t}\right|_{0} ^{\infty} \\
=\lim _{t \rightarrow \infty} \frac{1}{-r} A e^{-r t}-\frac{1}{-r} A e^{0} \\
=\frac{A}{r}\left(^{*}\right)
\end{gathered}
$$

