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Preface

This paper is intended to be a practical guide to intertemporal modeling, with particular
emphasis on how intertemporal optimization can be incorporated into computable general equi-
librium models. It focuses on the practical details of building intertemporal models: how to set
up and solve intertemporal optimization problems, how to analyze such models in partial equilib-
rium, and how to link them to computable general equilibrium models. For the most part,
nuances of theory have been relegated to footnotes, but plenty of references have been provided
to enable an interested reader to pursue the subject in more depth. A reading guide for further
study appears at the end.

To make the paper as useful as possible, a number of exercises, complete with answers,
have been included. These present supplementary material or go into particular topics in more
depth. They can be used in the ordinary way to practice techniques discussed in the text, or they
can be used as rather lengthy footnotes on certain topics. In any event, they form an important
part of the paper and should not be neglected. Overall, with this structure and emphasis, we hope
the paper will be a useful introduction to the rapidly expanding field of intertemporal general
equilibrium modeling.
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1 Introduction

Most applied economic models are designed to represent economies at particular points in
time. For long run models the point of interest is far in the future, when all immobilities have
vanished and all transient behavior has died out. On the other hand, the only period of interest in
short run models is the immediate present. In both cases, however, only one period is captured by
the model, so they are both essentially static. No information is included on how the economy
changes over time, so it is impossible to solve for the sequence of equilibria between the short
and long run solutions.

In contrast, intertemporal models specifically include equations describing how the econ-
omy evolves. These allow the models to be used to find the economy’s trajectory through time.
Unfortunately, this versatility comes at a price: intertemporal models are somewhat harder to
build − and much harder to solve − than static models. However, there are two circumstances in
which the extra effort is worthwhile. The first arises when the trajectory itself is of interest apart
from the short and long run equilibria. Policy makers, for example, are often keenly interested in
how fast the economy moves toward the long run, and whether or not the transition is smooth.
This is especially true when the short and long run effects of the policy are very different. Fur-
thermore, some models, especially those in which lags play a prominent role, show cycles in cer-
tain variables between the short and long run. If so, it is often important to know the timing and
amplitude of the oscillations. A final occasion in which the trajectory might be of interest occurs
when the model is to be used to evaluate the effect of different policies on the rate of growth.
Thus, in a number of circumstances it is necessary to be able to compute the path of the economy
over an extended period of time, and in these cases it would be worthwhile to build an intertem-
poral model.

The other reason for building an intertemporal model is to incorporate intertemporal opti-
mization by agents. If some of the agents in the model choose current variables to optimize
intertemporal objective functions, even short run results will require some form of intertemporal
modeling. For example, households might be modeled as lifecycle savers whose consumption is
based in part on their human wealth. Since human wealth is the discounted sum of expected
future labor earnings, any shock that changes expected wage rates or hours worked in the future
will change human wealth and hence change current consumption. Since the lifecycle model is
used more and more often as the basis of savings behavior, it has stimulated the development of
intertemporal modeling.

Perhaps the strongest motivation for developing intertemporal models, however, has been
the desire to integrate recent theories of investment behavior into applied general equilibrium
work. In such investment models, each firm chooses its level of investment to maximize the
stock market value of its equity. Market value, in turn, depends on the earnings a firm is expected
to generate in the future. Thus, changes in expectations about a firm’s prospects can change its
market value and hence its level of investment. To a large extent, this is nothing more than a for-
malization of the common sense principle that firms whose prospects look good will invest more
than others. Investment isprima faciean intertemporal decision, so treating it as such in general
equilibrium models is very appealing.
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In the remainder of this paper we present a small general equilibrium model incorporating
investment behavior derived from value maximization.1 We begin by setting up and solving a
simple investment problem. Next, we analyze the investment model thoroughly in partial equilib-
rium to gain insight into how it works, and to demonstrate some powerful analytical techniques
that can be used with intertemporal models of all types. After that, we link the investment prob-
lem to a small, static general equilibrium model to produce an intertemporal general equilibrium
model. Finally, we will use the resulting model to analyze a number of different policies.

2 A Simple Intertemporal Model of Investment

We begin building our intertemporal model of investment by making two assumptions: first,
that each firm chooses its level of investment to maximize its stock market value, and second that
an arbitrage equation governs the relationship between returns on debt and returns on equities.
The first assumption establishes the basis for the firm’s investment behavior. There are many
other ways in which a firm might choose its level of investment, but this is the only one which is
likely to be optimal for its shareholders. The second assumption is needed to define how the
firm’s market value is determined by asset holders. Together, the two assumptions will allow us
to construct the firm’s objective function.

The next step in setting up the model is to choose a particular arbitrage equation and use it
to find an expression for the market value of a firm. In this paper we will use the arbitrage equa-
tion below:

r (t)V(t) = D(t) + V′(t) ,  (2.1)

whereV(t) is the value of the firm at time t,r (t) is the rate of interest on bonds at t,D(t) is the
dividend paid by the firm, andV′(t) is the derivative of the firm’s value with respect to time.2 The
left side of the equation gives the return that could be earned by holding V dollars of bonds. The
right side is the return received by holding all of the firm’s equity and is equal to dividends plus
capital gains. Arbitrage will occur as long as the returns on the two assets differ, so in equilib-
rium, equation (2.1) must hold.

Many extensions and modifications to equation (2.1) are possible. If equity is thought to be
riskier than debt, a risk premium could easily be added. If dividends, capital gains and interest
income are taxed differently, those taxes could also be included in the equation. We have used
expression (2.1) to keep our exposition as clear as possible, but it could easily be modified with-
out changing the substance of our analysis.

Expression (2.1) is a differential equation in the value of the firm. It can be solved by col-
lecting terms in V on the left, finding an appropriate integrating factor, and integrating both sides.

1. The investment model incorporates adjustment costs in the spirit of Eisner and Strotz (1963), Lucas (1967), Gould (1968) and
Treadway (1969). In this formulation, investment will depend on the marginal value of Tobin’s q (see Tobin (1969) for a discus-
sion of q).

2. For typographical convenience we will denote time derivatives using the prime symbol (′) rather than the usual dot.
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Collecting terms produces the following equation:

V′(t) − r (t)V(t) = − D(t) .  (2.2)

When r is constant, an appropriate integrating factor for (2.2) is:3

e−rt . (2.3)

Multiplying both sides of (2.2) by (2.3) produces the following:

( V′(t) − rV(t) )e−rt = − D(t)e−rt . (2.4)

From inspection, it is clear that the left side of (2.4) is the differential of the product of V and the
integrating factor, so (2.4) can be rewritten as:

d( V(t)e−rt )

dt
= − D(t)e−rt . (2.5)

Equation (2.5) shows how the value of the firm must change over time if the arbitrage equa-
tion is to hold. At this point, the expectations of investors become important. If investors have
information allowing them to form expectations about the future path of dividends, and they
believe the arbitrage condition will always hold, then (2.5) can be integrated to give the value of
the firm.4 To see this, suppose investors at timeτ have an information setΩτ that leads them to
expect the path of dividends at all future timest ≥ τ to be given by a functionD(t; Ωτ ). That is,
D(t; Ωτ ) is the dividend expected for timet given information setΩτ . Similarly, let V(t; Ωτ ) be
the expected value of the firm att given informationΩτ . Then, integrating both sides of (2.5)
from τ to an arbitrary future timeT (and rearranging slightly) gives the expression below:

V(τ ; Ωτ ) = V(T; Ωτ )e−r (T−τ ) +
T

τ
∫ D(t; Ωτ )e−r (t−τ ) dt . (2.6)

Equation (2.6) has a clear and intuitive interpretation. If we letτ be the present, "today",
then the left term,V(τ ; Ωτ ), is the value of the firm today, given today’s information. Moving to
the right,V(T; Ωτ ) is the expected value of the firm at timeT given information available today,
so the first term on the right side is the present value today of owning the firm atT. Finally, the
rightmost term is the present value of the dividends expected to be paid betweenτ andT. Thus,
equation (2.6) shows that the value of the firm today is equal to the present value of owning it at

3. When r is not constant the integrating factor becomes a bit more complicated; for this model it would beexp(∫ r (v)dv). How-

ever, none of the subsequent results would change significantly.

4. These expectations need not be correct, but they must exist; investors must have some belief about the dividends the firm will
pay in the future.
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T plus the present value of the dividends it will pay betweenτ andT.

If we knew what investors today thought about the value of the firm at some particular time
T in the future, and what dividends they expected the firm to pay between now and then, we
could use (2.6) to compute the value of the firm today. Unfortunately, for most points in the
future, we do not knowa priori what investors expect the firm’s value to be, so we do not have an
appropriate value ofV(T; Ωτ ). One solution, however, is to letT go to infinity. Then, by making
a plausible assumption about the rate of growth ofV far in the future, the middle term in (2.6) can
be evaluated.

To see how this works, observe that whenT goes to infinity the middle term in (2.6)
becomes the following:

T→∞
lim V(T; Ωτ )e−r (T−τ ) . (2.7)

As long asV(T; Ωτ ) remains bounded asT → ∞, expression (2.7) will be zero. Thus, if V
remains finite for all time, the middle term in (2.6) can be dropped from the equation. In fact,
(2.7) will be zero under the more general condition that as T goes to infinity, the rate of growth of
V is strictly less than the interest rate. That is, (2.7) will be zero as long as the following holds:5

T→∞
lim

V′(T; Ωτ )

V(T; Ωτ )
< r . (2.8)

Thus, if we are willing to assume that (2.8) holds, we can solve (2.6) for the value of the firm at
time t:

V(τ ; Ωτ ) =
∞

τ
∫ D(t; Ωτ )e−r (t−τ ) dt . (2.9)

This says that the value of the firm today is the present value of the dividend stream it is expected
to pay in the future, given today’s information.

Expression (2.8) is formally known as a "transversality condition" because it is a require-
ment imposed on the limit of V as time goes to infinity. It is an assumption made in order to
obtain equation (2.9), and is not an implication of the model because there is nothing in the prob-
lem we have specified so far that requires (2.8) to hold. However, it has a sensible economic inter-
pretation, and is not an unreasonable assumption. In essence, expression (2.8) rules out Ponzi
schemes that go on forever.6 To see why, notice that if (2.8) is violated, the arbitrage condition
can only hold if the firm pays negative dividends. Otherwise, (if dividends were zero or positive)

5. In fact, the following analysis can also be applied, with slight modifications, when (2.8) holds with equality.

6. Ponzi schemes take their name from Charles Ponzi who perpetrated a famous chain letter swindle in the 1920’s. Today the term
is used for any pyramid scheme that operates by continually drawing in new people at the bottom.
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the return on equity would be higher than the return on debt, so no one would be willing to hold
bonds. This would force the interest rate up until (2.8) held. The only time (2.8) can be violated
and still have the arbitrage equation hold is if investors are willing to pay money into a firm for-
ever without receiving any dividends. Thus, assuming that (2.8) holds is nothing more than rul-
ing out infinitely-lived Ponzi schemes.

In the remainder of the paper the values of all variables in future periods will always be
expectations based on an information setΩτ . To keep our notation as simple as possible, we will
often suppressΩτ from variable names and write, for example,V(t; Ωτ ) asV(t). It is important
to remember, however, that all variables at future times are expectations implicitly derived from a
particular information set.

At this point we have derived the objective function in the firm’s investment problem: equa-
tion (2.9) gives the firm’s value in terms of its expected future dividends. Furthermore, (2.9) has a
clear, intuitive interpretation: the value of the firm at timet is the discounted present value of its
dividend stream. This interpretation is so compelling that it is often tempting to begin building
investment models by assuming that (2.9) holds and dispensing with its derivation from arbitrage.
Starting with the arbitrage equation, however, provides a rigorous basis for (2.9). More impor-
tantly, the approach can also be used for much more complicated models (such as those with
taxes or risk premia) for which the form of the value function is not obvious from inspection.

The next step in setting up the investment problem is to specify how dividends depend on
the firm’s choice variables. To keep our model simple, we assume the firm pays out everything it
earns except what it uses for investment. In addition, we also assume that all investment is inter-
nally financed: the firm does not issue new debt or equity to pay for investment. These assump-
tions are fairly innocuous: introducing other means of finance such as corporate bonds or new
share issues alters the problem relatively little. In fact, the financial decision makes no difference
at all if capital markets are perfect.7 Nonetheless, it is straightforward to incorporate finance into
the model if necessary.

Under the assumptions above, dividends are equal to the difference between the firm’s rev-
enue and the total of its variable costs, its investment costs, and any taxes it pays. To put this
symbolically, if K is a vector of capital stocks,L is a vector of variable inputs,I is a vector of
investments in the capital stocks,P is a vector of prices and wages, andZ is a vector of taxes,
dividends are given by some functionD(K , L, I , P, Z).

To get much further, we need to specify the actual form ofD. For the purposes of this sec-

tion, we will assume there is a single tax which falls on dividends,Td, and thatD is additively
separable into a short run profit function and an investment cost function.8 The short run profit
function gives the profit on a particular vector of capital stocks after variable inputs are chosen
optimally. Since this corresponds closely to the accounting idea of earnings, we will represent it

7. This is a consequence of the Modigliani-Miller theorem, first described in Modigliani and Miller (1958). Blanchard and Fischer
(1989) provides a clear discussion of this point in chapter 6.

8. Formally, we have assumed that the short run variable input decision is separable from the long run decision on investment, and
also that the capital stock does not enter the investment cost function. Both of these are controversial in the literature, and nei-
ther is really necessary to the model. However, they do keep the exposition much clearer.
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by function E, and will often refer to it as earnings. UsingC to represent the investment cost
function, dividends can be written as shown below:

D(K , L, I , P, Z) = ( E(K , P) − C(I , P) )(1 − Td) .  (2.10)

To keep our exposition as clear as possible, we will assume there is no sign constraint on divi-
dends (or that if there is one, it is never binding). In particular, we will not prohibit the firm from
spending more on investment than it earns at a particular date.

At this point we can set up and solve the firm’s investment problem under fairly general
conditions. Inserting (2.10) into (2.9) gives us the firm’s objective function. In addition, the firm
is subject to an accumulation constraint which specifies how the capital stock evolves as a conse-
quence of the firm’s investment. Here we will make the usual assumption that the time derivative
of the capital stock is given by the difference between gross investment and depreciation. Thus,
the firm’s investment problem at timeτ is to choose a path of investment,I (t) for t ≥ τ , that
solves:9

max
∞

τ
∫ ( E(K , P) − C(I , P) )(1 − Td)e−r (t−τ ) dt ,

subject toK ′ = I − δ K . (2.11)

Problem (2.11) requires dynamic optimization and can be solved using the method of opti-
mal control. Although a complete treatment of optimal control is well beyond the scope of this
book,10 a simple problem, such as the one above, can be solved in the following way. Suppose
the problem has the form:

max ∫ f (s, c, t) dt ,

subject tos′ = g(s, c, t) ,

wheres and c are variables andt indicates time. It is customary to refer tos as the problem’s
"state variable" andc as its "control variable". In problem (2.11), for example, the state variable
is the capital stock (K) and the control variable is the rate of investment (I ). To find necessary
conditions for an optimum, we form the problem’s Hamiltonian function,H, as shown:

H = f (s, c, t) + Λ(t)g(s, c, t) ,

9. In writing the problem this way we have implicitly assumed that any constraint on the sign of investment would not be binding.
Moreover, we have also ignored certain boundary conditions (such as the initial capital stock) which constrain the firm. We will
discuss the boundary conditions in detail later in this section.

10. A very lucid treatment of applied optimal control and other methods of dynamic optimization is Kamien and Schwartz (1981).
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whereΛ(t) is a multiplier much like the Lagrange multiplier of static problems.11 It is possible to
show that the solution must satisfy the following first-order conditions:12

∂H

∂c
= 0,

∂H

∂s
= − Λ′,

∂H

∂Λ
= s′. .

Thus, it is possible to characterize the optimal path of the state and control variables by construct-
ing the Hamiltonian and taking first-order conditions.

To apply this approach to our current problem, we start by constructing the Hamiltonian for
(2.11):

H = (E − C)(1 − Td)e−r (t−τ ) + Λ(I − δ K) .  (2.12)

Thus, the necessary conditions for optimality of a particular path of investment are the following:

∂H

∂I
= 0 ,  (2.13)

∂H

∂K
= − Λ′ , (2.14)

∂H

∂Λ
= K ′ . (2.15)

Differentiating (2.12) as required by (2.13) through (2.15) produces the first order conditions for
the problem:

−
∂C

∂I
(1 − Td)e−r (t−τ ) + Λ = 0 ,  (2.16)

−
∂E

∂K
(1 − Td)e−r (t−τ ) + δ Λ = Λ′ , (2.17)

I − δ K = K ′ . (2.18)

The multiplier,Λ(t), can be interpreted as the change in the value of the firm today (at timeτ ) due
to a marginal increase in the capital stock at timet in the future.13 For convenience, we can intro-
duce a new function,λ(t), which is defined as shown:

11. Unlike the static case, however, a dynamic optimization problem will have a whole sequence of multipliers, one for each point
in time. Hence,Λ is a function oft.

12. Refer to Kamien and Schwartz or another textbook on dynamic optimization for proofs of these.

13. That is,Λ(t) shows how the stock market value of the firm would change if, at the optimum investment plan, investors suddenly
discovered that the firm was going to be given an extra unit of capital at timet
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Λ(t) = λ(t)e−r (t−τ ) . (2.19)

The interpretation ofλ is straightforward: it is the value at timet of having an additional unit of
capital at that time, based on information held at timeτ . To distinguish between it andΛ, λ is
often called the "current value" multiplier. Substituting (2.19) into (2.16) and (2.17) and rear-
ranging produces the expressions below:

λ =
∂C

∂I
(1 − Td) ,  (2.20)

λ′ = (r + δ )λ −
∂E

∂K
(1 − Td) .  (2.21)

Equations (2.20), (2.21) and (2.18) are the first order conditions for any problem in which the div-
idend function has the separability properties discussed above. To solve a particular problem, we
will need to insert specific functions forE and C. However, a number of conclusions can be
drawn from the general structure above.

Starting with (2.20), if we assume that investment costs are a continuous, strictly convex
function of I (so thatCI andCII are positive), then we know from the implicit function theorem
that there must be an inverse functionF such that:

I = F(λ , Td, P) .  (2.22)

Thus, (2.20) determines the level of investment as an implicit function ofλ : if λ were known,I
could be calculated from (2.22).14 In contrast, equation (2.21) is a first order differential equation
in λ which does not depend onI . This allows it to be solved using the method of integrating fac-
tors described above for the arbitrage equation.15 In this case, the resulting expression is:

λ(t) =
∞

t
∫

∂E

∂K
(1 − Td)e−(r+δ )(s−t)ds . (2.23)

Equation (2.23) shows how the market value of the firm changes in response to marginal
changes in its capital stock. Moreover, it has an interesting and useful interpretation. The right
side of (2.23) is the present value at timet of the additional future post-tax earnings that would be

14. This property has spawned dozens of empirical papers. Under conditions derived in Hayashi (1981),λ can be linked to stock
market data, and hence can be observed. (This will be discussed in detail in exercise E6). Thus, ifλ can be taken to be exoge-
nous, choosing a particular functional form forC allows the adjustment cost model to be tested econometrically using only the
first of the necessary conditions, in this case the rewritten expression (2.22); one such example is Summers (1981). What is
often overlooked in these papers, however, is that sinceλ and I are simultaneously determined, it is inappropriate to assume
thatλ is exogenous. See McLaren (1989) for a more complete discussion.

15. No loss of generality is implied by this. Were it not independent of investment, equation (2.22) could be used to eliminateI by
substitution.
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generated by an extra unit of capital received at timet. Thus, (2.23) determines the stock market
value of an extra unit of capital, while (2.22) selects the optimal level of investment given that
market valuation.

The next step in building a practical investment model is to derive the earnings and invest-
ment cost functions for a firm with a particular technology. Suppose the firm’s output is produced
according to a constant returns to scale Cobb-Douglas function of labor and capital:

q = Lε K1−ε . (2.24)

In the short run, the capital stock is fixed and the firm chooses labor to maximize the difference
between its revenue and its variable costs. That is, it solves the following problem:

max pq − wL ,

subject toq = Lε K1−ε . (2.25)

The earnings function E can be found by inserting the optimal labor input found from (2.25) into
the maximand. The result is the expression below:

E(K , P) = (
1 − ε

ε
) 


ε p

w



1/(1−ε )

wK . (2.26)

For convenience, we can define a functionβ which captures the price and wage effects, so (2.26)
can be rewritten as:

E(K , P) = β (P)K , (2.27)

wereP is a vector of wages and prices. The functionβ (P) gives the short run return on a unit of
capital, so it can be thought of as the rental price of the capital stock. We will often refer to earn-
ings functions that are linear inK as having constant returns to scale.

Turning now to the investment cost function, we adopt the adjustment cost formulation and
require thatC and its first two derivatives be positive. This means that investment is costly, that it
becomes more expensive as more of it is done, and that its marginal cost increases asI rises. To
derive a particular investment cost function, we can start with an assumption about how new capi-
tal goods are produced.

Suppose that new capital goods have to be installed (in some sense) before they can be used
in production. Machines, for example, have to be installed in factories before they can be used.
Each firm might produce its own installed capital good by buying raw capital goods and hiring
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special workers to install it. If raw capital goods and installation services have to be combined in
fixed proportions, the production function for installed capital goods would have the following
form:

I = min {Xk, S} , (2.28)

whereXk is the quantity of raw capital goods, and S is a measure of installation services chosen
to have the same units asXk. Next, suppose that S is produced from labor as follows:

S = 


Li

θ



1/2

, (2.29)

whereLi is the labor hired for installation. Thus, the total cost of investment is the expenditure

on raw capital goods plus the cost of labor for installation. If the firm choosesXk andLi to mini-
mize the cost of attaining any particular level of I, the investment cost function shown below is
obtained:

C(I , P) = Pk I + θ wI2 . (2.30)

By inspection, (2.30) has the properties we required of an investment cost function: it is positive,
increasing and convex. As long asθ is greater than zero, there will be costs of adjustment in
investment since the marginal cost increases as I rises.

Next, the earnings function in (2.27) and the adjustment cost function in (2.30) can be
inserted into the general first order conditions derived above − (2.20), (2.21) and (2.18)− to pro-
duce the necessary conditions for this particular problem:

λ = (Pk + 2wθ I )(1 − Td) ,  (2.31)

λ′ = (r + δ )λ − β (P)(1 − Td) ,  (2.32)

K ′ = I − δ K . (2.33)

As suggested above, (2.31) can be solved for the optimal level of investment given a particular
value ofλ :

I =
1

2wθ
(

λ
1 − Td

− Pk) .  (2.34)

Equation (2.34) can be used to eliminate I from (2.33), producing a final pair of differential equa-
tions inλ and K:
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λ′ = (r + δ )λ − β (P)(1 − Td) ,  (2.35)

K ′ =
λ

2wθ (1 − Td)
− δ K −

Pk

2wθ
. (2.36)

Equations (2.35) and (2.36) fully characterize the solution to the firm’s investment problem.
Solving them simultaneously would produce paths ofλ and K that were consistent with the first
order conditions for the problem laid out in (2.31) through (2.33). Unfortunately, it is impossible
to solve them analytically for arbitrary time paths of wages, prices and taxes. Instead, they must
usually be solved numerically. Later we will describe several numerical methods suitable for
problems like this. First, however, we will demonstrate a number of techniques that can be used
to provide a lot of intuition about the model’s behavior without actually solving for the optimal
path of investment.

3 Graphical Analysis

Ideally we would like to solve differential equations (2.35) and (2.36) for the time paths of
λ and K, insert the resultingλ into (2.34), and solve for the path of investment over time. How-
ever, some of the terms in the equations, such as tax rates, can be arbitrary functions of time. That
means that (2.35) and (2.36) must be solved explicitly for each policy to be modeled. For most
policies, it will be difficult or impossible to solve the equations analytically, so numerical meth-
ods must be used to obtain explicit results for investment. On the other hand, (2.34) through
(2.36) do contain all relevant economic information about the solution, albeit implicitly. This
makes it possible to explore many properties of the model without actually solving for the explicit
path of investment. In the remainder of this section, we demonstrate how such an analysis might
proceed. The methods we use are routine analytical tools in the study of differential equations
and can be found in textbooks such as Birkhoff and Rota (1978).

3.1 The Steady State

The difficult integration required to solve (2.35) and (2.36) becomes easy when the model
reaches the steady state. For example, suppose that the exogenous variables eventually settle

down to stable valuesPss, Tdss
, wss and Pss

k at some point in the future. We can find the steady
state corresponding to these by settingλ′ and K ′ to zero in (2.35) and (2.36) and solving the
equations simultaneously. This produces the expressions below:

λ ss = β (Pss)




1 − Tdss

r + δ





, (3.1)
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Kss =
1

2θδ wss



β (Pss)

r + δ
− Pss

k



. (3.2)

From these, steady state investment can be found by inserting (3.1) into (2.34). As might be
expected, the result confirms thatI ss = δ Kss.

Equations (3.1) and (3.2) can be used to examine the effects of different shocks on the
model’s steady state. This can be accomplished most easily by total differentiation of both
expressions with respect to prices and taxes:

dλ ss = (
1 − Tdss

r + δ
) ∇pβ ⋅ dPss −

β (Pss)

r + δ
dTdss

, (3.3)

dKss =
1

2θδ (r + δ )wss
∇pβ ⋅ dPss −

1

2wssθδ
dPss

k , (3.4)

where∇pβ is a vector of partial derivatives ofβ with respect to the elements ofP, anddPss is a
vector of changes in elements ofP. From (3.3) and (3.4) it is easy to see what happens when one

of the model’s exogenous variables changes. For example, if the dividend tax,Tdss
, were to rise,

steady stateλ would fall, while the capital stock would be unchanged. Capital is unaffected

becauseTd is a pure profits tax in the long run, falling only on profits and not affecting any deci-
sions at the margin. In contrast, if the price of capital,Pss

k , were to rise, the steady state capital
stock would fall whileλ ss would be unchanged.λ ss is present value of future earnings on an
additional unit of capital, so it is not affected by a change in the cost of new capital goods,Pk.
When the price of capital increases with no accompanying rise inλ , the capital stock must fall.
Finally, changes in the prices and wages embodied in vectorP affect λ and K in the same way.
For example, from (2.26) an increase in the firm’s output price would increaseβ , so λ and K
would both rise. On the other hand, a rise in the wage rate would lowerβ , so λ and K would
both fall.

This sort of analysis can be applied to a wide variety of models, not just those that have an
explicit steady state. In fact, it can be used with any model that can be transformed to have a
steady state. For example, if the original model did not have a steady state because of exogenous
population growth, it could be transformed onto a per capita basis. The result would then have a
steady state. Models which do not themselves have steady states but which can be transformed to
have them are often said to attain balanced growth in the long run. Thus, steady state analysis can
be applied both to models with steady states, and to models with long-run balanced growth.
Moreover, this is likely to encompass all models with interesting long run behavior, since any
model which does not asymptotically attain balanced growth will eventually exhibit very peculiar
features (such as negative budget shares in consumption).
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3.2 Constructing a Phase Diagram

Knowing how the steady state responds to changes in the exogenous variables is helpful,
but it does not provide any information about the model’s dynamic behavior. For that, another
tool can be used: the Poincare phase plane.16 A phase plane is a two dimensional graph of a
model’s dynamic behavior that is constructed in the following way. Two of the model’s variables
are chosen to be axes. Usually these will be the two variables of most dynamic interest; in the
investment model above, they would beλ and K. Then, for each point in the resulting plane, the
time derivatives of the two variables are evaluated. Again using the investment model as an
example, these would beλ′ and K ′. Together, these derivatives define a vector which indicates
the direction the system would move if it ever happened to reach that point. Thus, by using the
finished phase plane, it would be possible to trace out the complete trajectory of the system given
initial values of the dynamic variables. It would be a tedious but straightforward process: start at
the given point, evaluate the derivatives, take a small step in the indicated direction, and repeat.
As a practical matter, computing the derivatives of the dynamic variables at all points in the plane
is unnecessary. Indeed, most of the details of the model’s dynamics can be found by computing a
few carefully chosen loci, as we will show.

The first step in constructing a phase diagram is to solve for and plot the model’s steady
state.17 At the steady state, the derivatives of both variables are zero, so if the system ever gets
there, it will stay there. Next, find the locus of points where the derivative of the first dynamic
variable is zero. This will include at least the steady state. Then, find the locus of points where
the derivative of the other variable is zero. Again, this should include the steady state. These loci
divide the plane up into several regions. In each region the derivatives of the dynamic variables
will have a particular sign, so if the system ever enters that region, it will unambiguously evolve
in a particular direction. From this it is possible to conclude a great deal about qualitative aspects
of the model’s dynamics. To illustrate how a phase plane can be used, we will now construct one
for the investment model.

The variables of most dynamic interest in the investment model areλ andK , so we will use
those as the axes. From equations (3.1) and (3.2) we know the model has a unique steady state,
(λ ss, Kss), which is plotted in figure 3.1 and marked A.18 Next, we solve for the locus of all points
for which the time derivative ofλ is zero. This can be accomplished by totally differentiating
(2.35) with respect toλ and K , and settingdλ′ to zero.19 This produces an equation showing
what change must be made inλ in order to keepλ′ zero when K changes:

0 = (r + δ )dλ . (3.5)

16. Phase planes, also called phase diagrams, are described in more detail in textbooks on differential equations such as Birkhoff
and Rota. They can be constructed for any system that is stationary, or "autonomous", in which the variables do not explicitly
depend on time.

17. A model without a steady state can often be transformed fairly easily to have one; for example, by converting to aper capita
basis. In the remainder of this section we will assume a steady state exists.

18. Multiple steady states can be accommodated, if necessary, although linear models will have only one.

19. For this particular model, another way to find theλ′ = 0 locus is to setdλ to zero in (2.35). However, this relies on an unusual
property of the model−the absence ofK from (2.35)−which will not be true in general.
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Thus, forλ′ to be zero,dλ must be zero, soλ must always remain at its steady state value. This
means that theλ′ = 0 locus is a horizontal line through the steady state in figure 3.1.20 Next, we
apply the same procedure to equation (2.36) to obtain a locus of points whereK ′ is zero. This
produces the following:

0 =
1

2wθ (1 − Td)
dλ − δ dK . (3.6)

Forming the ratiodλ /dK shows that:

dλ
dK

= 2wθ (1 − Td)δ . (3.7)

This indicates that if K increases slightly,λ must also rise in order forK ′ to remain zero. Put
another way, thedλ /dK locus must be upward sloping. Since it includes the steady state, it must
look like theK ′ = 0 locus in figure 3.1.

These loci allow the model’s dynamic behavior to be inferred without solving for the sys-
tem’s direction of motion at every point in the plane. To see why, we can consider the two loci in
turn. By construction, theλ′ = 0 locus contains all points in the plane whereλ′ is zero. Points
not on the locus, therefore, have nonzero derivatives. Since both equations in the system are con-
tinuous inλ and K, regions of positive and negative derivatives must be separated by theλ′ = 0
locus. Thus, the derivative ofλ must have the same sign in regions I and II, and must be nonzero.
Similarly, λ′ in regions III and IV must be nonzero, and of the opposite sign to that of regions I
and II.21 Inserting an arbitrary value ofλ greater thanλ ss into equation (2.35) reveals thatλ′ is
positive whenλ is above its steady state value. In the same way it can be shown thatλ′ is nega-
tive for values ofλ below the steady state. These facts can be summarized on the phase diagram
by small arrows pointing up in regions I and II, and down in regions III and IV.

The same technique can be applied to theK ′ = 0 locus. Points to the right ofK ′ = 0, in
regions I and IV, must have the same sign forK ′. Inserting an arbitrary value of K above its
steady state into (2.36) shows thatK ′ must be negative in those regions. Similarly, it can be
shown that the derivative of K must be positive in regions II and III. This information can be
included in the phase diagram by small arrows pointing to the right in regions II and III and to the
left in regions I and IV. The results are shown in figure 3.2.

The phase diagram is now almost complete and can be used to reveal a great deal about the
dynamic behavior of the model. For example, suppose the economy is initially somewhere in
region II. We know from the analysis above, as summarized by the arrows drawn in region II,
that the system will move upward and to the right as long as it is in that region. In economic
terms, this means thatλ and K will both grow indefinitely, so the system will move farther and

20. As noted in the previous footnote, the absence of the capital stock from equation (3.5) is a particular property of this model and
will not be true in general. Exercise E5, for example, discusses a model which does not have this property.

21. We assume theλ′ = 0 locus does not lie along a local extremum.
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farther away from the steady state as long as it remains in region II. The only event that could
possibly change the trajectory would be for the system to move into one of the other regions, but
we can show that never happens. The system cannot move from region II into either region III or
region IV because in region II the derivative ofλ is strictly positive. Thus, the system can only
move upward. On the other hand, the derivative ofK is positive in region II, so the model could
move to the right toward quadrant I. As it did so, however, the derivative ofK would become
closer and closer to zero, so the rightward motion would slow down. Finally, at theK ′ = 0 locus,
the system would not be moving to the right at all, and the upward motion of increasingλ would
push it back into region II. Thus, the system cannot move from region II into any of the other
regions.

From this argument we know that if the system ever entered region II it would move
upward and to the right forever. Similar reasoning shows that if the model entered region IV, it
would move down and to the left forever. Regions I and III are a little more difficult because it
turns out that the system does leave those sectors eventually, but in both cases it is possible to
show that the system will move farther and farther away from the steady state as time goes on.

The final step in constructing the phase diagram is to identify any dynamic paths that lead to
the steady state. So far, the situation does not look too promising: the path cannot run through
any of the regions I through IV because we have established that once the model enters those
regions it will never return to the steady state. However, two possible paths remain: theλ′ = 0
locus and theK ′ = 0 locus. Of these, theK ′ = 0 locus can be ruled out becauseλ tends to move
even farther away from its steady state value at each point along the locus. On the other hand, the
economy could move along theλ′ = 0 locus and would eventually converge to the steady state.
Thus, only a single path leads to the steady state and it lies along theλ′ = 0 locus. This is illus-
trated on figure 3.3 by a heavy line with several arrows.

A trajectory leading to the steady state is usually called a "stable path" since by proceeding
along it, the model eventually attains the steady state. The stable path plays a crucial role in the
dynamic behavior of the economy. As will be discussed in section (3.3), in most models it will be
unique. That is, it associates a single value ofλ with each value of the capital stock. Moreover, if
the economy starts at some point on the stable path, as time passes it will remain on the path and
move closer to the steady state. At the same time, if the economy starts somewhere off the stable
path, it never attains the steady state. Together, these properties mean that if the system is to
attain the steady state from an arbitrary initial capital stock, there will be a unique value ofλ
associated with that stock. That is, the marginal value of an additional unit of capital is unique at
any particular capital stock. The essence of dynamic modeling is to determine the stable path,
and henceλ , correctly.

At this point, the phase diagram is complete. It shows the dynamic behavior of the system
at any point (λ ,K), given the model’s parameters and the expected values of the exogenous vari-
ables. The next step will be to use the phase diagram to determine what happens when new infor-
mation arrives that causes investors to change their expectations of future variables. Such infor-
mation might be a government announcement about future tax rates, a new discovery by the firm
that will lower its costs, a change in the regulatory structure, or any number of other events.
Before analyzing any shocks, however, we will digress briefly to discuss a very important
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property of models: uniqueness of the stable path.

3.3 Saddle Path Stability and Uniqueness

At least near the steady state, most interesting economic models possess a characteristic
known as "saddle path stability" which guarantees uniqueness of the stable path. This uniqueness
turns out to be essential in many models because it allows the transversality condition discussed
in section (2) to be used to tie down the value of the firm at some point in the future. If there
were many paths leading to the steady state, the transversality condition alone would not be
enough to determine the value of the firm at an earlier point in time.

To understand the role of the transversality condition more deeply, and to see why it is
important that the stable path be unique, it is useful to think about exactly what the equations of
motion tell us. As a group, they describe how the model would evolve from any particular point
in the (λ , K) plane, given an underlying information setΩτ . Thus, if we knew where the system
was at a particular moment, and no news had occurred to changeΩτ , the equations of motion
would tell us where the system was going next. However, at the instant that new information
arrives, investors may change their expectations about the firm’s prospects. If they do,λ will
change discontinuously from its value under the old information set, sayλ(τ ; Ω1) to a figure
appropriate given the new information, sayλ(τ ; Ω2). As a practical matter, this behavior is very
familiar since it occurs in the stock market every day. When a company unexpectedly announces
an innovative new product, for example, its stock market value (and normally its marginal value
of new capital) jumps upward. The path ofλ up to the instant that news arrives provides essen-
tially no guidance about whatλ will be just after a shock. Moreover, the size of the jump cannot
be determined from the equations of motion alone; an additional piece of information is needed.
Formally, one of the problem’s boundary conditions is missing.

Boundary conditions are special requirements imposed on the solution in order to make it
satisfy certain facts known about the model. For example, we might require the solution path to
begin at the existing capital stock. The role of boundary conditions is to determine the constants
of integration that arise in solving (integrating) the model’s equations of motion. If the model
consists of two differential equations, for example, two constants of integration will appear and
two boundary conditions will be needed. Sometimes these conditions can be derived from fairly
obvious facts. In particular, since state variables, such as the capital stock, do not change discon-
tinuously, their values should not change at the instant of the shock. Since the initial post-shock
values of state variables should be exactly equal to their values just before the shock, the pre-
shock values of state variables provide some of the needed boundary conditions.

Unfortunately, state variables alone do not provide enough information. In the investment
model, for instance, two boundary conditions are required but there is only one state variable.
Since costate variables such asλ can change discontinuously when news arrives, their values
before the shock provide no information about the condition of the model just after the shock. In
technical terms, the initial condition forλ is unknown, so we must look for another fact to use for
the second boundary condition.
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One possibility is to impose something on the long run behavior of the model. We may not
know the initial value ofλ , but we might be willing to assume that in the long runλ will eventu-
ally approach its steady state value. Technically, this is another transversality condition like the
one used at the beginning of section (2). (In fact, it is actually the same condition slightly dis-
guised.) If the stable path is unique, transversality conditions can be used to provide the missing
boundary conditions. On the other hand, transversality conditions are inadequate when there are
several stable paths leading to the steady state − steady state properties alone cannot determine
which stable path the model will follow. Thus, uniqueness of the stable path is a very important
property of a model because it allows information about the steady state to be used to determine
some of the model’s integration constants. If the stable path is unique, there will be a single post-
shock value for each costate variable, so it is possible to determine exactly which dynamic path
the system will follow after a shock.

All models discussed in here, and virtually all rational expectations models appearing in the
literature, have unique stable paths. Showing that a particular model has this property is a fairly
technical exercise in linear algebra and differential equations. In the remainder of this section we
sketch how it can be done, but the material is not needed to understand the rest of the paper. If
you are not comfortable with differential equations, we suggest you skip to section (3.4).

Saddle path stability holds when the linear form of the model has eigenvalues that are dis-
tinct, nonzero and of mixed sign.22 Hence, to check whether a model has a unique stable path we
must solve for its eigenvalues. Suppose the model is a system of first order differential equations
that can be written in the form:

x′ = Ax + b , (3.8)

wherex is a vector of variables whose time derivatives are given byx′, A is a matrix andb is a
vector (bothA andb may be functions of time). The eigenvalues we require are those of matrix
A. Thus, to see if the model of section (2) has a unique stable path, we would write equations
(2.35) and (2.36) as shown:





λ′
K ′





=





r + δ
1

2wθ (1 − Td)

0

−δ









λ
K




+




−β (P)(1 − Td)

−Pk/2wθ





. (3.9)

The eigenvalues of this expression arer + δ and−δ , which are distinct, nonzero and have mixed
signs. The model in section (2), therefore, has the saddle path property.

To see why the eigenvalues are so important, consider solving (3.8) near the steady state (so
that A andb are essentially constant). The first step is to look for a solution to the homogeneous
form of the problem in whichb is zero:

22. Strictly speaking, these are sufficient conditions for saddle path stability. For a review of the properties of eigenvalues, or of lin-
ear algebra in general, see Strang (1980). In this context, we are using "linear" in the differential equations sense only.
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x′ = Ax . (3.10)

If all of the eigenvalues ofA are distinct and nonzero, then any vectorx can be written as a linear
combination of the eigenvectors ofA. Thus, ifΓ is a matrix whose columns are the eigenvectors,
the following must be true:

x = Γc , (3.11)

wherec is a vector of coefficients. SinceΓ is constant near the steady state (becauseA is con-
stant), differentiating (3.11) with respect to time gives the following:

x′ = Γc′ . (3.12)

Substituting (3.11) and (3.12) into (3.10) gives:

Γc′ = AΓc . (3.13)

However, sinceΓ is composed of the eigenvectors ofA, it must be the case that:

AΓ = Γψ , (3.14)

whereψ is a diagonal matrix of eigenvalues. Inserting (3.14) into (3.13) and multiplying through
by the inverse ofΓ produces the following:

c′ = ψ c . (3.15)

Thus, the original differential equation can be transformed into (3.15), which is much easier
to solve:ψ is diagonal, so (3.15) is nothing more than a collection of unrelated differential equa-
tions, each of which can be solved by the method of integrating factors. The solution to (3.15) is:

c = eψ t ⋅ γ , (3.16)

whereγ is a vector of integration constants.23 From (3.11), this means thatx has the solution:

x = Γeψ t ⋅ γ . (3.17)

The complete solution to the original equation (3.8) is the sum of (3.17), which solves the homo-
geneous equation, and a particular solution to (3.8), such as the steady state. Thus, a final

23. In case this notation is unfamiliar, a scalar raised to a matrix power is a matrix whose elements are the scalar raised to the power
of each element of the original matrix.
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expression forx is the following:

x = Γeψ t ⋅ γ + xss . (3.18)

Equation (3.18) allows us to infer a great deal about the behavior of the solution from the
eigenvalues alone. For example, if all the eigenvalues had positive real parts, then the model
would only converge toxss if every element ofγ were zero. A model whose eigenvalues were all
positive, therefore, could only reach the steady state if it started out there initially. For this rea-
son, such models are said to be "unstable". On the other hand, if the eigenvalues all had negative
real parts, the solution would converge to the steady state from any starting vector. This comes
about because the first term on the left in (3.18) will always approach zero as time tends to infin-
ity when the eigenvalues are negative. Models with this property are said to be "globally stable".

Many economic models, however, have a mixture of positive and negative eigenvalues.
Since they are neither unstable nor globally stable, such models are often said to be "saddle-path
stable". At the most fundamental level, saddle-path stability means that a model will converge to
its steady state from some initial vectors but not from others. In a sense, this is intermediate
between the unstable and globally stable cases: an unstable model will only reach the steady state
from a single point − the steady state itself − while a globally stable model will get there from any
starting point. Saddle path models are in between: they converge to the steady state from some,
but not all, of the possible initial vectors.

To put this more formally, supposex is a vector of lengthn in Rn. If all the eigenvalues are
distinct, there will ben of them. In general, ifm of the eigenvalues have negative real parts, the
model will converge to the steady state from anm dimensional subspace ofRn. If, for example,
all n eigenvalues are positive (m = 0), the model will converge to the steady state from a sub-
space of dimension 0 − a single point. This is the unstable case discussed above. If alln eigen-
values are negative (m = n), the steady state can be reached from any point inRn, so the model
will be globally stable. However, if there arem negative eigenvalues, where 0 <m < n, the sys-
tem can reach the steady state from anm dimensional subspace ofRn. In practical terms, this
means that if we want the system to converge to the steady state, we can only choosem elements
of x independently − the othern − m terms will be implied by the model.

This property of saddle path models is very useful because we usually do not know the ini-
tial values of all elements of vectorx. In the model of section (2), for example, we do not know
the value ofλ immediately after a shock. Since the model is saddle-path stable, however, we
know that it can only attain the steady state from certain (λ ,K) pairs. Furthermore, because one
of the model’s two eigenvalues is negative, we know that if we choose a value for eitherλ or K ,
the value of the other will be implied. Thus, knowing the initial value ofK and requiring that the
model eventually attain the steady state is enough, in principle, to let us calculate the value ofλ .
As we will discuss in section (4), however, computingλ usually requires numerical integration.

In summary, checking that a particular model has a unique stable path requires computing
the model’s eigenvalues and verifying that they are distinct, nonzero and of mixed sign. If the
stable path is unique, however, it allows features of the steady state to be imposed on the solution
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as boundary conditions. For models with foresight, this is often essential.

3.4 Analyzing an Experiment

Once the phase diagram is complete it can be used to analyze the effects of changes in the
exogenous variables. As we will show, the phase diagram is a very powerful tool: it provides a
complete qualitative description of the effects of a shock. The only thing it does not provide, of
course, is a set of numerical results for the variables. Sometimes numerical results are necessary,
so we will discuss numerical analysis in section (4). Keep in mind, however, that all of the quali-
tative features of the solution will be revealed by the phase diagram.

Before going into the details of analyzing experiments it is useful to consider what sorts of
shocks can be studied with an intertemporal model. In a static model a shock consists of a single
change in an exogenous variable. A tax rate, for example, might rise. In intertemporal modeling,
however, the entire path of the tax rate over time matters. This makes it convenient to group
experiments into four categories depending on: (1) whether the shock is permanent or temporary,
and (2) whether the change is announced in advance or implemented immediately. One of the
most interesting features of intertemporal modeling is that a given shock can have substantially
different effects depending on how it is enacted over time. A temporary tax increase, for exam-
ple, can produce effects that are completely different from the permanent version of the same pol-
icy.

These distinctions between policies mean that each shock has (at least implicitly) three
dates associated with it: its announcement, its implementation, and its repeal. The announcement
date is the time at which the public first becomes aware of the policy. It is often quite a bit earlier
than the date of implementation, which is the time at which the policy (and the relevant exoge-
nous variable) actually changes. Temporary policies also have a repeal date, at which the shock
ceases and the exogenous variables return to their original values.

All four categories of experiment can be analyzed using phase diagrams. A natural place to
start is with immediate, permanent changes in policy. The first step in using the phase plane is to
determine how the shock affects the zero-derivative loci. Most shocks will shift one or both of
the loci, resulting in a new steady state. The second step is to find the new stable path. Usually
this will be straightforward once the new loci have been found. At this point, the post-shock
phase diagram is complete. It governs the motion of the system when all of the exogenous vari-
ables have their post-shock values. Thus, the overall diagram consists of two superimposed phase
planes: one which applies when the exogenous variables have their initial values, and one which
applies after the shock.

The remaining step is to trace out the motion of the system over time. At the instant the
policy is implemented, which in this case is immediately, the state variables (K in the example
above) are fixed and cannot change. This means that if the economy is ever to get to the new
steady state, the costate variables must immediately jump to the new stable path. Once on the sta-
ble path, the economy evolves over time toward the steady state. In the phase diagram this will
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appear as a vertical jump in the costate variable, followed by gradual movement along the new
stable path.

To make this discussion more concrete we will now show how an immediate, permanent
increase in the dividend tax in the model of section (3) could be analyzed. First, consider what
happens to theλ′ locus. For convenience, equation (2.35) is repeated below:

λ′ = (r + δ )λ − β (P)(1 − Td) .  (2.35)

As Td rises, the rightmost term in equation (2.35) becomes closer to zero. Forλ′ to remain zero,
therefore,λ must fall. Thus, theλ′ = 0 locus must shift downward. The new location of the
locus can be found by solving for the new steady state value ofλ . To find the effect of the tax
increase on theK ′ = 0 locus, we begin with equation (2.36), repeated below:

K ′ =
λ

2wθ (1 − Td)
− δ K −

Pk

2wθ
. (2.36)

The increase inTd causes the leftmost term on the right hand side to rise. ForK ′ to remain zero
at constantλ , K must rise. Thus, theK ′ = 0 locus shifts to the right. The result of shifting both
loci is shown in figure 3.4.

The location of the new steady state can be found by settingλ′ and K ′ equal to zero and
solving for λ and K in equations (2.35) and (2.36), using the new values of the exogenous vari-
ables. In this model, the dividend tax has a particularly interesting effect: it does not change the
steady state value of the capital stock. This can be verified by solving forλ ss, inserting it into
equation (2.36), and solving forKss. The dividend tax cancels out, so it has no effect on the

steady state capital stock. After a moment’s thought the intuition behind this result is clear:Td is
a pure profits tax which does not affect any margins. An increase in the tax lowers the post-tax
dividends that firms can pay, soλ falls, but it does not affect the optimal level of investment, so
the capital stock is unchanged.

For this policy it is easy to trace out the motion of the system over time. When the tax rises,
λ jumps down to the new stable path. However, the capital stock is already at its steady state
level, so the jump inλ brings the model instantly to the new steady state. Thus, the only change
in the system is an immediate drop inλ ; the capital stock and investment are completely unaf-
fected. This path is shown in figure 3.5 by a grey line.

Interestingly, the results are quite different when the shock is anticipated. Suppose that
instead of implementing the tax increase immediately, the government announces that it will
occur after three years. The initial and final steady states are exactly the same as in the previous
case, so the basic phase diagram is the same as figure 3.4. The path of the model over time, how-
ever, is more complicated because the policy change does not occur immediately.
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When the policy is announced,λ falls part of the way toward its new steady state value, but
not as far as it would if the policy took effect immediately. It stays higher initially because the
dividend tax stays at its old value for three years, so dividends paid during that time will not be
taxed any more heavily than they were before. However,λ does drop below its original value
because the firm will eventually pay lower dividends.

After the initial drop inλ , the system evolves according to the equations of motion associ-
ated with the original steady state. These equations apply because they depend only on current
tax rates and none of the taxes have actually changed yet. Thus, the system moves down and to
the left. It continues to move in that direction until the tax change occurs in year three. At that
time, the model becomes governed by the new equations of motion. These have the same form as

the original equations, but differ in that they are evaluated at the new value ofTd. Since the
model is required to attain the steady state eventually, it must be on the new stable path when the
tax is implemented in year three. After year three, the system evolves along the stable path
toward the new steady state. The path of the model is shown in figure 3.6.

Notice that figure 3.6 shows no jump inλ at the instant when the tax is implemented.
Instead,λ evolves smoothly and reaches the new stable path precisely at the moment of imple-
mentation without jumping. This reflects an important feature of intertemporal models with per-
fect foresight: there are no windfall gains or losses from theimplementationof anticipated poli-
cies. There can be windfalls associated with theannouncementof a policy--in this example,λ
falls at the announcement--but there are no windfalls from events that have been anticipated.

This point can be understood intuitively by thinking about what happens toλ near imple-
mentation. Recall from equation (2.23) thatλ is the present value of the after tax earnings of a
marginal unit of capital. Once the tax has actually increased, all subsequent earnings are evalu-
ated at the new rate. Shortly before implementation, however, the value of an extra unit of capital
is what it will earn after implementation plus a small amount more obtained before the tax
change. As time becomes closer and closer to implementation, the extra amount of earnings
becomes smaller and smaller, soλ approaches its post implementation value smoothly.

It is straightforward to demonstrate this mathematically. Let the time of implementation be
τ and the value ofλ at that point beλ(τ ). Now consider the value ofλ at an instant∆ before
implementation. Equation (2.23) can be written:

λ(τ − ∆) =
τ

τ −∆
∫

∂E

∂K
(1 − Td)e−(r+δ )(s−τ −∆) ds + λ(τ )e−(r+δ )∆ . (3.19)

As ∆ approaches zero,λ(τ − ∆) approachesλ(τ ). Thus,λ must be continuous at implementation
and cannot jump. Notice that this argument does not depend on features of the model such as the
form of the earnings or investment cost function. It is a very general property of perfect foresight
models.
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Figure 3.6 shows something very striking: the capital stock falls during the period between
announcement and implementation of the policy. This occurs because firms respond to the policy
by paying higher dividends before implementation while the dividend tax is low. Higher divi-
dends limit investment and drive down the capital stock. Once the tax is in place, however,
investment returns to normal and dividends drop. Since the capital stock was driven down,
restoring the normal level of investment causes the amount of capital to rise. This, in turn, causes
the value of the firm to increase and allows investors to receive part of their return as capital
gains.24 Since the capital gains tax is unchanged (and zero), investors benefit from shifting part of
their return from heavily taxed dividends to lightly taxed capital gains.

The difference between implementing the dividend tax increase immediately and announc-
ing the change in advance highlights one of the most interesting aspects of intertemporal model-
ing. There is no way that the adverse effect of the announced policy on the capital stock could
have been discovered using a static model. This kind of unexpected result arises frequently in the
analysis of announced policies, and also in the study of temporary policies. Since it is rare for
shocks to the economy to come as a complete surprise, explicit modeling and analysis of
announcement effects is essential to understanding the impact of government policy and the con-
sequences of other kinds of shocks.

We hope this discussion has demonstrated the value of phase plane analysis in the study of
intertemporal models. All qualitative features of the model’s response to any shock can be
obtained using the phase plane. The only details it does not provide are the coordinates of partic-
ular points in the plane. We might want to know, for example, exactly how farλ initially drops in
figure 3.6, or exactly how much the capital stock has fallen by implementation of the tax increase.
To obtain these values it is necessary to find an explicit solution to the model using numerical
methods.

4 Numerical Methods

To solve the model numerically, we must obtain explicit numerical paths for the dynamic
variables (λ and K) throughout time. Once these are known, the paths of other variables can be
found easily by applying equations from the model. For example, in section (2) investment can
be calculated fromλ using equation (2.34). This means that finding a numerical solution to the
model boils down to solving the model’s equations of motion. These are a set of simultaneous
differential equations, so solving them requires some form of numerical integration.

If the initial values ofλ andK were known, it would be easy to integrate (2.35) and (2.36).
Differential equations for which all boundary conditions are known at the initial point in time are
called initial value problems, and there are many methods available to solve them.25 A simple,
intuitive approach is Euler’s method, which works in the following way.26 Let the first instant

24. Refer to the arbitrage condition shown in equation (2.1).

25. There is an enormous range of methods available for solving initial value problems. For more information consult Press,et al.
(1986).

26. Although it is intuitively appealing, Euler’s method is not usually satisfactory in practice. For a complete discussion, refer to
Press,et al.(1986).
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after the shock be called time 0. Ifλ andK were known to take valuesλ0 andK0 at t = 0, those
values could be used in (2.35) and (2.36) to calculateλ′(0) andK ′(0). Multiplying the deriva-
tives by a tiny increment of time, say∆t, would show approximately how muchλ andK changed
over that interval. Adding these changes toλ0 andK0 would give approximate values forλ and
K at time∆t. These could then be used in (2.35) and (2.36) to obtainλ′(∆t) and K ′(∆t). By
applying this process repeatedly, the entire future path ofλ andK could be calculated. Moreover,
the solution could be made arbitrarily accurate by making the step size∆t sufficiently small.

Unfortunately, the initial post-shock values of any costate variables in the model (such asλ
above) will usually be unknown.27 This leaves the model without enough boundary conditions to
determine the solution uniquely. To understand this intuitively, recall the phase diagram in figure
3.6. If λ(0) is not known, there is no way to determine where the system will be immediately
after the shock, except that it will be somewhere in the vertical line of points aboveK(0). Since
different points aboveK(0) lead to drastically different paths of the economy over time, the solu-
tion is not completely determined.

Fortunately, this indeterminacy can be eliminated for models having the saddle path prop-
erty discussed in section (3.3). Any absent initial conditions can be replaced by conditions on the
long run behavior of the costate variables. Typically this is accomplished by imposing transver-
sality conditions which require the costate variables to approach their steady state values as time
tends to infinity. These replace the missing initial conditions and allow the solution to be
uniquely determined. This produces a system, however, in which some of the boundary condi-
tions hold at the initial time, and some at the steady state. When the boundary conditions are
scattered among several points in time, the system is formally described as a "two-point boundary
value problem", and it cannot be solved using techniques for initial value problems.

In fact, two-point boundary value problems are much harder to solve than their initial value
counterparts, and require special numerical methods. The next few sections describe some of
these methods and how they perform for economic models. To keep the discussion concise and
fairly concrete, we will focus on models that have a single costate variable, such as the model in
section (2). However, all of the methods can be extended without difficulty to handle multiple
costate variables.

4.1 Shooting

One intuitive way to solve a two-point boundary value problem would be to guess the miss-
ing initial condition, integrate the system forward as though it were an initial value problem, and
check whether the transversality condition was satisfied. If it was not, the guessed condition
could be revised and the entire process repeated. Eventually an initial condition would be found
which led to the steady state when the system was integrated forward. This approach has been
used extensively in engineering and the physical sciences, and is known as "shooting".28

27. By this we mean that the costate variables may jump initially, taking on new values which cannot be determined without solving
the entire model.

28. Shooting is described in Press,et al.(1986), Roberts and Shipman (1972), and in most textbooks on numerical analysis.
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In practice, shooting is usually implemented in the following way. Let the missing initial
condition be denotedλ0. For each guess ofλ0, the model is integrated forward using Euler’s
method to a large but finite timeT. This generates aλ(T) which we will refer to as an "achieved"
value and denoteλ a

T. Next, the transversality condition is tested by comparingλ a
T with its steady

state valueλ ss.29 For convenience, we can define a functionM which measures how close the
solution is to the steady state:

M(λ0) = λ a
T(λ0) − λ ss . (4.1)

Since the achieved value ofλ at T depends on the guess ofλ0, both λ a
T and M are written as

functions ofλ0. When a guess ofλ0 has been found for whichM less than a specified tolerance,
a solution has been obtained.

Defining M as in (4.1) makes it clear that the object of shooting is to choose a value ofλ0

that setsM to zero. This suggests using Newton’s method to update the guess at each iteration.

At iteration k + 1, a first-order Taylor series expansion ofM about the previous guessλ k
0 for a

trial solutionλ k+1
0 gives:

M(λ k+1
0 ) = M(λ k

0) +
dM(λ k

0)

dλ
(λ k+1

0 − λ k
0) .  (4.2)

Assuming thatλ k+1
0 is indeed a solution,M(λ k+1

0 ) can be set to zero. This allows the equation to
be rearranged as shown:

λ k+1
0 = λ k

0 −
M(λ k

0)

dM(λ k
0)/dλ

. (4.3)

Thus, by evaluating bothM and its first derivative atλ k
0, a revised guess ofλ can be constructed.

Unfortunately, in economic applications shooting suffers from severe numerical instability
and can rarely be used. Small errors made in the initial guess of the missing costate variable lead
to intertemporal paths that move far from the steady state after only a few years. The model of
section (2) provides a typical example of why this problem occurs. Recall equation (2.35), one of
the model’s equations of motion:

λ′ = (r + δ )λ − β (P)(1 − Td) .  (2.35)

If the true post-shock value ofλ0 is inserted on the right side of the equation, the true value of
λ′(0) can be calculated and the system integrated forward toward the steady state. On the other
hand, consider what happens if the guess ofλ0 is too high. Evaluating (2.35) would give a value

29. The value ofλ ss is calculated in advance using the approach discussed in section (3.1).
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of λ′ that was also above its true value. Thus, ifλ starts out too high, it will grow too fast as well.
As it grows,λ′ increases, soλ moves farther and farther away from the stable path.

In fact, for the model of section (2) the error inλ grows exponentially over time at rate
r + δ . Thus, if the initial guess ofλ is too high by∆, afterT years the error will have grown to

∆e(r+δ )T which could be a gigantic number.30 For example, if the interest rate were 5 percent and

depreciation rate 10 percent, after 100 years the error inλ would exceed∆ × 1010. A similar
problem arises if the initial guess ofλ is too small. This means that a small error in the initial
guess ofλ will set the model on a dynamic path that leads far from the steady state. In the termi-
nology introduced above,M will be huge for even very small errors inλ0. This sensitivity makes
shooting very vulnerable to the rounding errors introduced by computer programs and prevents it
from being useful for most economic models.

4.2 Multiple Shooting

Multiple shooting is a refinement of simple shooting that helps control models with explo-
sive tendencies.31 The full period over which the model is to be solved is divided into a number
of subintervals and the model is then shot over each. Shooting over shorter periods keeps the
model from drifting too far from the stable path in any one interval. This limits the numerical
damage done by rounding errors, so multiple shooting can be used with economic models. How-
ever, using more intervals means that rather than searching for a single missing initial condition,
the algorithm must find a vector of such conditions spread out across time.

As a example of how multiple shooting is used, consider solving the investment model over
two adjoining intervals: [0,τ ] and [τ , T]. The first step is to guess what valuesλ will take at 0
andτ . Like simple shooting, multiple shooting is an iterative procedure, so let the guesses at iter-

ation k be denoted byλ k
0 and λ k

τ . The next step is to integrate the model forward from 0 toτ
starting at the known initial capital stock,K0, and the guessλ k

0. This produces a pair of achieved

values ofK(τ ) andλ(τ ) which we will denote byKa
τ andλ a

τ . Using Ka
τ andλ k

τ as initial condi-
tions, the model is then integrated forward fromτ to T. From this, an achieved value ofλ at T
will be obtained.

The key feature of multiple shooting is that the integration over [τ , T] starts from the guess

λ k
τ , and not fromλ a

τ , the achieved value from the first integration. Starting from the achieved
value of λ would be exactly the same as integrating the model over [0,T], which is ordinary

shooting. When the guess ofλ k
0 is incorrect, however,λ will have drifted very far from its true

value by timeτ . This makesλ a
τ a terrible estimate of whatλ should actually be atτ , so replacing

it with a guessed value − even a bad guess − vastly reduces the error in the second integration.

To see this intuitively, recall the example of error propagation described in section (4.1):

after T years, an initial error∆ had compounded to a miss distance of∆e(r+δ )T. Dividing the

30. The error ’s growth rate is given by the model’s positive eigenvalue,r + δ ; see section (3.3).

31. Multiple shooting was introduced to economics by Lipton,et al. (1982), but has a long history of use in other disciplines. It is
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period [0,T] into two subintervals of equal length reduces the problem enormously. An error∆ in

the guess ofλ0 only grows to∆e(r+δ )T/2 by the end of the first interval, which is the square root of
its previous value. Of course this reduction comes at a cost: a guess forλ is also required at the
beginning of the second interval. Assuming that another error of the order of∆ is made in the sec-

ond guess,λ will miss its steady state value by∆e(r+δ )T/2. Thus, dividing the interval into two

equal parts reduces the total miss distanceM to roughly 2M1/2. WhenM is large, this will be an
enormous improvement. Moreover, the number of subintervals is not limited to two. Using more
subintervals reduces the error propagation problem even further, so any explosive tendencies of
the model can be completely controlled.

Since the costate variable has to be guessed at the beginning of each interval, the revision
rule used to generate new guesses at each iteration is slightly more complicated than the one used
for simple shooting. In the case of two subintervals, the guess ofλ for the beginning of the sec-
ond interval,λτ , would be revised untilM2 in following equation became zero:

M2(λ0, λτ ) = λ a
T(λ0, λτ ) − λ ss . (4.4)

As with ordinary shooting,M2 is a miss distance. The subscript 2 has been added to indicate that
it is the miss distance for the second interval. Just as in shooting,M2 andλ a

T both depend onλτ ,
the guess ofλ at the beginning of the interval. However, they now also depend on an earlierλ ,
λ0. This occurs becauseλ0 affectsKτ , the starting capital stock for the second interval.

A second rule is needed to guide revision ofλ0. Since the model will not necessarily have
reached the steady state byτ , trying to reduceM2 in (4.4) to zero would be inappropriate.
Instead,λ0 is revised untilM1 in the expression below becomes zero:

M1(λ0, λτ ) = λ a
τ − λτ . (4.5)

That is,λ0 is varied until a value is found that can be integrated forward to attain the starting
guess ofλ for the next interval. As a result, when the correct value ofλτ has been found (so that
M2 in (4.4) is zero), a value ofλ0 that makesM1 in (4.5) zero must be the true initial value ofλ ;
if it were inserted into the model’s equations of motion, the system could be integrated forward to
time T and the transversality condition would be satisfied.

Thus, dividing the original period into two subintervals means that two variables (λ0 and
λτ ) must now be chosen to satisfy two equations (M1 = 0 andM2 = 0). This suggests using the
multivariate version of Newton’s method to compute an updated vector of guesses at each step of

the algorithm. Ifλ k is the vector of guesses at iterationk, then a new guess could be constructed
as follows:

λ k+1 = λ k − J−1M(λ k) ,  (4.6)

described clearly and in detail in Roberts and Shipman (1972).
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where J is the Jacobian matrix of partial derivatives ofM evaluated atλ k and λ k itself is the
guess ofλ at iterationk. Equation (4.6) can be used with any number of shooting intervals, and
with multiple costate variables, so multiple shooting is a fairly robust and versatile algorithm.

Unfortunately, it also consumes a great deal of computer time. Moreover, like all algo-
rithms based on Newton’s method, multiple shooting is not guaranteed to converge. Worse yet, it
is particularly unsuitable for intertemporal general equilibrium models because it requires solving
the intraperiod part of the model thousands of times in the course of finding a full intertemporal
solution.32 A single intraperiod equilibrium solution requires solving a static short run general
equilibrium model, which for even moderate sized models will require a noticeable amount of
computer time. Having to compute hundreds or thousands of these solutions makes multiple
shooting of very limited use for general equilibrium work.

4.3 The Fair-Taylor Method

A third method for solving two-point boundary value problems, and one which is often used
for intertemporal general equilibrium models, is known as the Fair-Taylor algorithm after its
originators.33 It is much easier to use than multiple shooting, controls explosive tendencies in the
solution equally well, and requires somewhat less computer time.

The algorithm itself is very simple. First, a guess is made of the entire path of the unknown
costate variable. That is, instead of guessing a singleλ as in shooting, or a handful ofλ ’s as in
multiple shooting, values ofλ are guessed for each point in the set{0, 1, . . . ,T}. For conve-

nience, let the guess at iterationk be denoted by the vectorλ k. If T is chosen to be year 100,λ k

will usually have 101 elements (the extra one is for year zero).34 The final element is always cho-

sen to satisfy the transversality condition. Usingλ k and the equation of motion of the capital
stock, the model is integrated forward from the initial point to the terminal time. During this pro-
cess, the costate variable’s equation of motion is temporarily ignored. The result is a vector of the

capital stocks,Kk for iterationk, that is consistent withλ k. It is the path the economy would fol-

low if λ actually had the sequence of values inλ k. However, it is not necessarily a solution to the
model becauseλ k does not necessarily satisfyλ ’s equation of motion. This means the algorithm
must iterate over vectorsλ until one is found that satisfies both equations of motion.

Revising the guess vector between iterations is accomplished by using the equation of
motion for λ in a special way. The technique can best be explained by example, so consider a

32. Thousands of intratemporal solutions are needed because each iteration of the algorithm requires solving every period in the
time interval several times. If the model is to be solved over [0,100], for example, 101 intraperiod solutions are required just to
integrate the path forward from 0 toT once. Much worse, however, is that the Jacobian matrix will usually have to be com-
puted numerically. That requires perturbing each of the elements ofλ and computing an entire solution path from 0 toT. If,
for example, there are five shooting intervals, the entire path of 101 intratemporal solutions would have to be computed six
times in order to evaluateM and J. Since over 600 intraperiod solutions would have to be found for a single iteration of the
intertemporal algorithm, the method is not useful for more than very small models.

33. The Fair-Taylor algorithm was originally proposed by Fair (1979), and later extended by Fair and Taylor (1983). This section
describes Fair and Taylor ’s "type II" iteration. They also proposed a "type III" procedure which can be used when the terminal
condition cannot be computed easily.

34. Simulating periods one year apart is not necessary for the Fair-Taylor algorithm to work. However, it is the most common
approach.
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slightly more general version of the model introduced in section (2). There will be one state vari-
able (K), one costate variable (λ), a vector of exogenous variables (Z), and two equations of
motion, one inK ′ and one inλ′. The equation of motion forλ will have the following form:

λ′t = f (λ t , Kt , Zt) ,  (4.7)

where f is a function that depends on the structure of the model. Equation (2.35), for example, is
a special case of (4.7) in which a particular functional form has been imposed forf . The deriva-
tive of λ at timet can be approximated by the difference between two consecutive values ofλ :35

λ′t ≈ λ t+1 − λ t . (4.8)

Inserting this into (4.7) produces the equation below:

λ t+1 − λ t ≈ f (λ t , Kt , Zt) .  (4.9)

This expression holds at all points along the path ofλ . Rearranging it slightly and dropping the
implied error terms produces the following:

λ t = λ t+1 − f (λ t , Kt , Zt) .  (4.10)

Equation (4.10) must hold at all points along the solution path so it suggests a revision rule
for guesses ofλ . By inserting values ofλ t+1, λ t and K from iterationk into the right side of
(4.10), an implied value ofλ t could be calculated. To use the terminology introduced in section
(4), an achieved valueλ a

t could be computed as shown:

λ a
t = λ k

t+1 − f (λ k
t , Kk

t , Zt) .  (4.11)

At the solution,λ a
t will be exactly equal toλ k

t because the solution vector must satisfyλ ’s equa-

tion of motion by definition. Away from the solution, however,λ a
t will not be the same asλ k

t .
The Fair-Taylor algorithm usesλ a

t to update the guess ofλ t in the following way:

λ k+1
t = α λ k

t + (1 − α )λ a
t , (4.12)

whereα is a parameter used to ensure the algorithm converges smoothly. Its takes on values in
the interval [0, 1] and is typically around one-half.36

35. There are a number of ways to approximate the derivative of a function at a point, but this formulation is particularly convenient
for this algorithm. For further details, refer to exercise E7.

36. Choosingα carefully is fairly important. It is not a good idea to makeα too close to one because that puts undue emphasis on

λ a
t , which is not necessarily closer to the true solution thanλ k

t . That is, the true value ofλ t may lie betweenλ k
t andλ a

t , but be

much closer toλ k
t thanλ a

t . In that case,α ≈ 1 would tend to make the algorithm diverge. On the other hand, ifα is too close
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Thus, for a simple investment model the algorithm would be applied in the following way.
Given a guess of the path ofλ , the first step would be to compute the corresponding path ofK by
integrating forward from the initial point. Next, using the guess ofλ and the resulting path ofK ,
construct a sequence of achieved valuesλ a. Finally, create a new guess by taking a convex com-
bination of the old guess and the achieved values. The solution has been obtained when the guess
and achieved values differ by less than a given tolerance.

On the surface, this technique seems to differ quite a bit from multiple shooting. At a
deeper level, however, the algorithms are very similar. Multiple shooting proceeds by guessingλ
at a handful of points, integrating forward, and employing a fairly sophisticated updating rule.
Fair-Taylor works by guessingλ at a vast number of points, integrating forward, and using a very
simple updating rule. In a sense, the Fair-Taylor algorithm is a version of multiple shooting in
which there areT shooting intervals−one for each year of the solution. It can, however, be some-
what faster than multiple shooting because it does not require computing the Jacobian matrix of
the miss distances at each iteration. In practice, this means that Fair-Taylor will require more iter-
ations to converge than multiple shooting, but each iteration will be much faster to compute.

4.4 Finite Differences

A fourth approach to solving two-point boundary value problems is the finite difference
method.37 It differs from the three previous algorithms because it does not operate by guessing
the missing costate variable and integrating forward to see if the transversality condition is satis-
fied. Instead, a system of overlapping difference equations is constructed which approximates the
model’s equations of motion. This system is then solved simultaneously to give the paths of the
model’s dynamic variables. The initial and terminal conditions will both be satisfied exactly, and
the algorithm is completely immune to the numerical instability that plagues shooting methods.
In addition, since finite differences is not iterative, it will always find a solution if one exists: it
will never fail to converge.38

The first step in using finite differences is to replace all of the derivatives in the model by
finite difference formulae. These formulae are local approximations to derivatives, and are con-
structed in a straightforward way from Taylor series expansions. For example, one approxima-
tion for a first derivative might be constructed as follows. First, expand the function of interest
about a particular timet for an adjacent timet + h:

f (t + h) = f (t) + f ′(t)h + O(h2) ,  (4.13)

whereO(h2) represents the Taylor series terms of orderh2 and above. Rearranging (4.13) and
dropping the higher-order terms shows that:

to zero, the algorithm will converge very slowly.

37. Finite differences is a standard method in engineering and physics. It was first applied to economic models by Wilcoxen
(1985a).

38. Strictly speaking, finite differences is not iterative in the sense that multiple shooting iterates over guesses of the costate vari-
able. It may, however, require iteration to solve the difference equations if they are nonlinear.
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f ′(t) ≈
f (t + h) − f (t)

h
. (4.14)

The term on the right is a finite difference approximation to the derivative off evaluated at time
t. Since it was constructed using current and future values off , it is technically known as a for-
ward difference. Dividing through byh reduced the terms that were dropped toO(h), so the
approximation itself will be accurate to that order.39 This means that if (4.14) were used to replace
a derivative, the resulting equation would be accurate only whenh was fairly small. Thus, it is
inappropriate to use a single difference equation to approximate the original model over a long
period of time.

Long periods of time can, however, be modeled using a series of expressions like (4.14),
each holding over successive intervals of time. If the total period were 100 years, for example, it
could be broken up into two intervals of fifty years each. Then, one equation like (4.14) could
link years 0 to 50, while another connected years 50 to 100. Of course 50 years is still a very
large value forh, so it would usually be necessary to break the original interval up into even
smaller segments using many more equations. If necessary, the solution can be made arbitrarily
accurate by using a sufficiently small step sizeh. No matter how many intervals are actually
used, in the end the original differential equation will have been replaced by a system of differ-
ence equations which link values off at different points in time. Solving this system simultane-
ously would yield the entire path off . For many models the equations will be linear or easily lin-
earized, so often the solution can be found using a variant of Gaussian elimination. This makes
finite differences very fast and a natural choice for use with general equilibrium models that
employ Johansen’s method.

To provide a more concrete example of how the method is actually implemented, consider
solving a fairly general investment model with equations of motion as shown below:

λ′(t) = a(t)λ(t) + b(t)K(t) − c(t) ,  (4.15)

K ′(t) = d(t)λ(t) + e(t)K(t) − f (t) .  (4.16)

The model of section (2) is a special case of this in whichb(t) = 0. Converting (4.15) and (4.16)
into finite difference form using forward differences produces the following:

λ(t + h) − λ(t)

h
= a(t)λ(t) + b(t)K(t) − c(t) ,  (4.17)

K(t + h) − K(t)

h
= d(t)λ(t) + e(t)K(t) − f (t) .  (4.18)

39. A number of other difference formulae will be discussed in exercise (E4), some of which are accurate to higher orders.
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For convenience, equations (4.17) and (4.18) can be written in matrix notation as shown:
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. (4.19)

This system approximates the true equations of motion, (4.15) and (4.16), in the neighborhood of
t. The complete solution requires a set of such equations, one for each interval of timeh. If there
areN intervals, collecting the approximations together produces a set of equations with the struc-
ture below:
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This is a system of 2N equations and 2(N + 1) variables. However, two of the variables are

known from the model’s boundary conditions:K(t0) and λ(t N) (using λ ss as the approximate

value of λ(t N)). Moving the corresponding columns over to the right side of the equation and
simplifying produces:
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This direct use of the boundary conditions eliminates the need for iteration and removes the
numerical instability problem associated with shooting methods. Equation (4.21) can be written
compactly as:

ΘF = B , (4.22)
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whereΘ is a matrix of coefficients,F is a vector of unknown values ofλ andK , andB is a vector
resulting from applying the boundary conditions. Solving the model requires finding the
unknown values ofF, which can be accomplished by computing:40

F = Θ−1B . (4.23)

Since approximations were used for derivatives in the model, the results obtained using
(4.23) will contain a certain amount of error. This is known as truncation error because it arises
from dropping high-order terms in the Taylor series expansions used to form the difference
approximations. For the difference formulae used above, the truncation error will beO(h). It is
possible to construct formulae that are accurate to higher orders (see exercise (E7), for example),
but all will introduce some truncation error. The severity of the problem depends on the step size
h between adjacent points of the solution. The dates at which these points are placed are often
called a "net" or a "grid", and grid spacing is crucial to the numerical accuracy of finite difference
solutions.

As the distance between grid points approaches zero, a finite difference approximation con-
verges to the true solution,41 so with enough grid points, the results can be made arbitrarily accu-
rate. However, the size ofΘ goes up with the square of the number of points, and the steps
required to solve (4.23) rise even more rapidly. As a  practical matter there will usually be a upper
limit on the number of grid points that can be used. For this reason, the grid must be chosen care-
fully to attain maximum accuracy at minimum cost.

Two features of the grid play key roles in determining the accuracy of the solution: the total
number of grid points used, and the location of those points in the interval [0,T]. To see why the
sheer number of grid points is important, consider solving a model over a uniform grid ofN inter-
vals using difference formulae accurate toO(h). This would requireN + 1 grid points (the extra
one is for time 0) at a distanceh apart, whereh is given by:

h =
T

N
. (4.24)

The resulting grid would have points at times{0,h, 2h, . . . , (N − 1)h, T}, and at each point the
solution would be subject to truncation error of orderO(h). In this situation, doublingN would
cut h in half and reduce the error at each point by roughly a factor of two. Thus, doubling the
density of the grid is a powerful tactic for reducing truncation error. Moreover, comparing solu-
tions on grids ofN and 2N intervals gives a good indication of the extent to which truncation
error has affected the results. Also, it is possible to use Richardson’s extrapolation42 to exploit
this fact to obtain even more accurate results.

40. In practice, the solution would never be computed using (4.23). Instead, Gaussian elimination would be applied to the system in
(4.22). Elimination is much faster than matrix inversion.

41. For a proof of this, see Isaacson and Keller (1966).

42. See Birkhoff and Rota (1969).
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Another way to reduce truncation error is to abandon using a uniform grid. It is often possi-
ble to make a solution much more accurate by rearranging the locations of the grid points in time.
This has the advantage of keeping the size of the problem fairly small. Intuitively, the way it
works is as follows. In certain periods of time, often late in the solution as the model nears the
steady state, the model’s dynamic variables will be changing very slowly. Moving grid points
from these regions to periods where the variables are changing rapidly improves the finite differ-
ence approximation’s ability to capture the model’s true dynamic behavior.

In practice, shifting grid points around is an extremely powerful tool for improving the
accuracy of finite difference solutions. The reason behind this stems from the Taylor series
expansions used to construct the difference formulae. To see why, consider the Taylor series
expansion below:

f (t + ε ) = f (t) + f ′(t)ε +
f ′′(t)ε 2

2!
+ . . . . (4.25)

In forming the forward difference formula used above, the terms above first order were discarded.
This introduced the following error:

f ′′(t)ε 2

2!
+ . . . . (4.26)

Ignoring higher-order terms, this means that on a uniform grid, truncation error would be highest
where f ′′ was largest. Similarly, the solution would be very accurate in regions wheref ′′ was
small. Thus, shifting points from regions of low curvature to regions of high curvature would
improve the solution by reducing overall truncation error.

Thus, there are two related techniques for reducing truncation error in finite difference solu-
tions. One approach is to increase the number of grid points used, thereby reducing the distance
between adjacent points and shrinking truncation error. When this is costly or inconvenient, a sec-
ond tactic is to place a given number of grid points at strategic times in the solution period. One
way to do this would be to transfer points from regions of low curvature to areas of high curva-
ture. Another approach would be to move points from uninteresting parts of the solution to peri-
ods of more interest. Most of the time, of course, these two reallocations will about the same.

Overall, the finite difference method is versatile, robust to numerical instability, fairly easy
to implement and very fast to solve. Furthermore, it is particularly suitable for Johansen-style
general equilibrium models because it results in a system of equations which can be integrated
directly into the Johansen solution procedure.43 For these reasons, it was the method we chose to
solve the intertemporal general equilibrium model presented in the next few sections.

43. We will return to this point in section (9). This approach to intertemporal general equilibrium modeling is due to Wilcoxen
(1987).
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5 An Intertemporal General Equilibrium Model

We now turn to the central topic of this paper: how intertemporal behavior can be included
in a general equilibrium model and what benefits that produces. As in the rest of the paper, we
will build the discussion around a particular model − in this case, a five sector general equilibrium
model with intertemporal investment. Subsequent sections describe the structure of the model,
explain how it was solved, and present a number of simulations showing how the inter- and
intratemporal parts of the model interact. The simulation results demonstrate two things: that
general equilibrium effects have a strong impact on investment behavior, and that changes in
investment brought about by intertemporal optimization have a significant effect on general equi-
librium variables. Thus, integrating intertemporal behavior into general equilibrium improves
both types of model. The remainder of this section presents an overview of the model.

The finished model consists of a sequence of short run general equilibrium models linked
together by an adjustment-cost investment model. All of the general equilibrium models have the
same structure, but each represents the economy at a different point in time. There are five sec-
tors of production denoted A, B, 1, 2, and 3. Sectors A, 1 and 2 produce consumption goods, sec-
tor B produces capital services, and sector 3 produces raw capital goods. There are two types of
capital, Ka and Kb, and one type of labor,L. Ka is created by industry A’s investment and is
used solely in the production of good A.Kb is created by sector B’s investment and is rented out
to sectors 1, 2 and 3. Sectors 1, 2 and 3 are traditional general equilibrium industries which use a
malleable capital stock (Kb) and do not do any investment. The sectors are shown schematically
in figure 5.1, and their attributes are summarized in table 5.1.

Table 5.1: Characteristics of the Sectors

Sector Invests In Capital Used Output Produced

A Ka Ka Consumption good A
B Kb − Kb capital services
1 − Kb Consumption good 1
2 − Kb Consumption good 2
3 − Kb Raw capital goods

Sector A is fully integrated into both the general equilibrium and investment models. It
uses a capital stock that is specific to it and must solve both a short-run production and a long-run
investment problem. Sector B, however, operates more like a bank. It invests to build up a stock
of capital which it then rents out to other industries for use in production. Thus, sector B solves a
long-run investment problem but its short-run problem is trivial − it rents out whatever it has.44

Between them, sectors A and B account for all of the investment in the model, so all investment
is the outcome of intertemporal optimization. Finally, sectors 1 and 2 are traditional zero-profit
industries which rent their capital from sector B and differ only in capital intensity. Both sectors

44. By requiring that sector B always rent out all of its capital we are ruling out monopolistic behavior on its part.
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produce consumption goods. Sector 3 is also a zero-profit industry which rents capital from sec-
tor B, but it makes raw capital goods. Separating it from the others facilitates experiments involv-
ing the price of raw capital goods.

The sectors were given these characteristics to emphasize that intertemporal behavior could
be added gradually to an existing general equilibrium model. Suppose a particular short-run
model had four sectors, all of which used a single capital good. The first step in adding intertem-
poral investment would be to include a fifth industry like sector B. That would allow the overall
capital stock to be determined by intertemporal optimization but without requiring the structure of
the existing four sectors to be changed in any way. Later, it might be useful to relax the assump-
tion that capital is freely mobile between sectors. This could be done by asserting that one or
more of the industries use industry-specific capital stocks. Each such sector would then have to
solve its own investment problem, and so would end up having the characteristics of sector A.
Thus, intertemporal behavior can be added to an existing model in stages; it is certainly not nec-
essary to rebuild the model completely.

Choosing the sectors to have the characteristics shown in table 5.1 resulted in the model
including two explicit intertemporal investment problems: one each for sectors A and B. These
were linked to a sequence of short-run general equilibrium models by a simple but flexible model
of expectations formation. This allowed simulations to be conducted under a variety of assump-
tions about the accuracy of expectations. In all, eleven general equilibrium models were used.
The first corresponded to the present while the eleventh was 100 years in the future. The exact
locations of the other equilibria in the interval [0, 100] will be discussed at length in section (9).
The next section presents the investment submodel in more detail.

6 The Investment Submodel

As in section (2), each firm chooses its investment path to maximize the stock market value
of its equity. Assuming once more that the firm’s short and long run optimizations are separable,
the outcome of its short run decision can be summarized by an earnings functionE(K , P), where
K is its capital stock andP is a vector of short run variables such as the price of the firm’s output.
All investment is internally financed, so dividends are short run profits less investment expendi-
ture. WritingC(I , P) for the investment cost function, where I is investment, and following the
method described in (2), the firm’s investment problem at timeτ can be shown to be:

max
∞

τ
∫ ( E(K , P) − C(I , P) )(1 − Td)e−rt dt ,

subject toK ′ = I − δ K , (6.1)

wherer is the interest rate,δ is the rate of depreciation, andTd is the dividend tax rate. This is
precisely the problem described in section (2). Given specific earnings and investment cost func-
tions, the principles of optimal control could be applied to generate first-order conditions for
value maximization. The completed model will contain two of these investment submodels, one
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each for industries A and B.

6.1 Investment by Sector A in Firm-Specific Capital

To formulate firm A’s investment problem, the first step is to derive its short run profit func-
tion from its production function. Production of good A is taken to be a Cobb-Douglas function
of labor and capital, and the firm takes prices as given, so from the production function:

Xa = (LP
a )ε a(Ka)1−ε a , (6.2)

where LP
a is the labor used in production by industry A, the short run profit function can be

shown to be:

Ea(Ka, P) =
1 − ε a

ε a




ε aPa

W



1/(1−ε a)

WKa , (6.3)

wherePa is the price of the firm’s output andW is the wage rate. Notice that the firm must form
expectations about both the future course of wages and the price of its product in order to be able
to compute the earnings of its future capital stock.

In addition to the earnings function, the firm’s investment cost function is needed in order to
solve the optimization problem. An intuitive way to obtain the function is to derive it from a par-
ticular choice of the firm’s investment-good production function. In this model we assume the

firm produces its own investment good by purchasing raw capital (Xa
3) and hiring labor (LI

a) to
install it. The amount of labor required is proportional to the square of the amount of raw capital.
This description can be summarized by the Leontief production function below:

I a = min { Xa
3 , 


LI

a /θ a



1

2
} , (6.4)

where Xa
3 is raw capital,LI

a is labor used by industry A in the construction of its investment
good, andθ a is a parameter. The corresponding cost function is:

Ca(Xa
3, P) = (P3Xa

3 + WLI
a)(1 − Ts) ,  (6.5)

whereTs is an investment subsidy. Minimizing investment costs given the production function
above requires that the following hold:
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I a = Xa
3 = 


LI

a /θ a



1

2
. (6.6)

Solving for Xa
3 andLI

a in terms ofI a gives:

Xa
3 = I a (6.7)

and

LI
a = θ a I 2

a . (6.8)

Finally, this means the investment cost function can be written as shown:

Ca(I a, P) = (P3 I a + Wθ a I 2
a)(1 − Ts) .  (6.9)

Three important remarks must be made about this equation. First, becauseθ a is not zero,
the firm faces internal costs of adjustment: the cost of new capital is convex in investment. Sec-
ond, adjustment costs depend on gross rather than net investment. In the steady state, gross
investment will be equal to depreciation, so steady state adjustment costs depend on the size of
the capital stock. This feature will be relevant for a simulation presented in section (10), but it
could easily be removed by rewriting the problem in terms of net investment. Third, adjustment
costs depend on investment but not on the capital stock. In the investment literature, adjustment
costs are often assumed to be a function of the ratioI /K , not of I alone. Our formulation comes
about as a consequence of the installation function we used in (6.4). To make adjustment costs a
function of I /K , (6.4) would have to be modified.

Returning to development of the investment model, finding the path of the capital stock
requires solving an optimal control problem using the short run profit and investment cost func-
tions above. The result is a system of differential equations--the problem’s first-order condi-
tions--which must be solved to produce an explicit expression for the capital stock over time. For
sector A, these first-order conditions are:

λ a = (P3 + 2Wθ a I a)(1 − Td)(1 − Ts) ,  (6.10)

λ a′ = (r + δ )λ a − β (1 − Td) ,  (6.11)

K ′a = I a − δ Ka . (6.12)

where
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β = (
1 − ε a

ε a
)


ε aPa

W



1/(1−ε a)

W . (6.13)

Solving for investment as a function ofλ a and the exogenous variables (see equation (2.22)) pro-
duces the following:

I a =
1

2Wθ a
(

λ a

(1 − Td)(1 − Ts)
− P3 ) .  (6.14)

Inserting this into the capital accumulation condition gives the equations of motion for sector A:

λ′a = (r + δ )λ a − β (1 − Td) ,  (6.15)

K ′a =
1

2Wθ a
(

λ a

(1 − Td)(1 − Ts)
− P3 ) − δ Ka . (6.16)

Finally, we will eventually need an expression for the steady state value ofλ a. Settingλ′a to zero
in (6.15) and solving forλ a produces the required formula:

λ ss
a =

β (1 − Tde)

r + δ
. (6.17)

Of course, (6.17) will only hold at the steady state.

6.2 Investment by Sector B in General Purpose Capital

The other investment sector, industry B, produces capital services which it rents to other
sectors. It takes prices as given, so its earnings depend only on its capital stock and the corre-
sponding rental price:

Eb(Kb, P) = ρ Kb , (6.18)

whereρ is the rental price of a unit of general purpose capital. The sector’s investment cost func-
tion is identical in form to that of industry A, except that parameterθ a has been replaced byθ b:

Cb(I b, P) = (P3 I b + Wθ b I 2
b)(1 − Ts) .  (6.19)

The first-order conditions for this problem are given below:
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λ b = (P3 + 2Wθ b I b)(1 − Td)(1 − Ts) ,  (6.20)

λ b′ = (r + δ )λ b − ρ(1 − Td) ,  (6.21)

K ′b = I b − δ Kb . (6.22)

For this sector, investment is given by

I b =
1

2Wθ b
(

λ b

(1 − Td)(1 − Ts)
− P3 ) .  (6.23)

Thus, sector B’s equations of motion are the following:

λ′b = (r + δ )λ b − ρ(1 − Td) ,  (6.24)

K ′b =
1

2Wθ b
(

λ b

(1 − Td)(1 − Ts)
− P3 ) − δ Kb . (6.25)

Finally, the steady state value ofλ b can be shown to be the following:

λ ss
b =

ρe(1 − Tde)

r + δ
. (6.26)

7 The Short Run General Equilibrium Model

The general equilibrium model includes the two investment sectors (A,B), three "tradi-
tional" industries (1,2,3), one consumer and the government. The traditional industries rent capi-
tal from sector B and earn no short run profits. Consumption goods are produced by industry A
and by traditional sectors 1 and 2. The third traditional sector, 3, produces raw capital goods used
in investment. All prices in the model are those received by producers, except for that of raw
capital goods which is the purchaser’s price. The following subsections present the model’s
equations, which are also summarized in appendix (2).

7.1 Investment Sectors

As discussed above, production in sector A is a Cobb-Douglas function of labor used in pro-
duction and the industry’s capital stock:
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Xa = (LP
a )ε a(Ka)1−ε a . (7.1)

Maximizing profits on existing capital implies the labor demand equation shown below:

LP
a = 


ε aPa

W



1/(1−ε a)

Ka . (7.2)

Cost minimization in production of investment goods generates the demands shown below for
raw capital and investment labor:

Xa
3 = I a , (7.3)

LI
a = θ a I 2

a . (7.4)

Finally, revenue less wage costs in production less investment costs gives pre-tax dividends:

Da = Pa Xa − WLP
a − 


P3Xa

3 + WLI
a


(1 − Ts) .  (7.5)

Industry B produces only capital services, so its behavior is entirely determined by the opti-
mal path of its capital stock. Deriving the demands for raw capital and investment labor produces
the equations shown below:

Xb
3 = I b , (7.6)

LI
b = θ b I 2

b . (7.7)

Gross dividends are simply revenue less investment costs:

Db = ρ Kb − (P3Xb
3 + WLI

b)(1 − Ts) .  (7.8)

The equations above fully describe the short run behavior of the special investment sectors in the
model.

7.2 Other Production

Three other sectors are included in the model: industries 1, 2 and 3. These sectors rent their
capital from industry B at priceρ and do not invest. Production in each sector is Cobb-Douglas,
as shown below, wherei ∈{1, 2, 3}:



-50-

Xi = γ i (Li )
ε i (Ki

b)1−ε i . (7.9)

Straightforward optimization generates the factor demand equations shown below:

Li =
1

γ i
Xi




ρε i

W(1 − ε i )



1−ε i

, (7.10)

Ki
b =

1

γ i
Xi



W(1 − ε i )

ρε i




ε i

. (7.11)

Finally, each sector is constrained to earn zero pure profits. For industries 1 and 2 this con-
dition is:

Xi Pi = WLi + ρ Ki
b . (7.12)

Because the price of raw capital goods is the purchaser’s cost, the zero pure profit condition for
industry 3 is slightly different, as shown below:

X3P3 = (1 + T3
s)(WL3 + ρ K3

b) ,  (7.13)

whereT3
s is the sales tax on capital goods.

7.3 The Consumer

The single consumer in the model supplies labor and owns both investment firms, so
income includes wages, dividends and lump sum payments from the government. There is no
explicit saving, so all income in each period is spent on consumption. (Implicitly, however, the
consumer saves whatever earnings the firms retain for new investment.) Thus, the consumer’s
budget constraint is the following:

C = WL(1 − Tw) + (Da + Db)(1 − Td) + LS , (7.14)

whereC is consumption expenditure,Tw is the tax on wages, andLS is a lump sum payment
from the government. Utility is a Cobb-Douglas function of the consumption of goods A, 1 and
2, and labor is supplied inelastically, so the demand system below can be derived from utility
maximization subject to the budget constraint in equation (7.14):

XC
a Pa(1 + Ta

s ) = α a
CC , (7.15)
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XC
1 P1(1 + T1

s) = α 1
CC , (7.16)

XC
2 P2(1 + T2

s) = α 2
CC . (7.17)

where theα ’s are Cobb-Douglas exponents, andTa
s , T1

s, andT2
s are sales taxes on goods A, 1 and

2 respectively.

An important consequence of formulating the consumer problem this way is that the supply
of savings is perfectly elastic: consumers save whatever firms want to borrow at the prevailing
interest rate. Many applied general equilibrium models use the opposite assumption, that capital
accumulation is driven entirely by savings behavior. The truth is likely to be somewhere in
between. One way to give the model more realistic savings behavior would be to formulate the
consumer problem as an explicit intertemporal optimization; for example, consumers could be
modeled as life-cycle savers. All methods presented in this paper apply as easily to consumption
as they did to investment. In particular, the finite difference method works in exactly the same
way. Thus, a more sophisticated model could include intertemporal optimization by both con-
sumers and firms with little additional difficulty. For the purposes of this paper, however, we will
confine our model to intertemporal investment.

7.4 The Government

The government is constrained to balance its budget, so spending is equal to tax revenue
less lump sum payments and subsidies. Revenue is raised by dividend taxes, wage taxes and
sales taxes, while lump sum payments are made to the consumer and subsidies are paid on invest-
ment expenditure. Thus, the government’s budget is given by the following equation:

G = Td(Da + Db) − Ts

P3(Xa

3 + Xb
3) + W(θ a I 2

a + θ b I 2
b)



+ Ta
s Pa Xa + T1

s P1X1 + T2
s X2P2 + T3

s P3X3

+ TwWL − LS . (7.18)

The government demand system is derived from a Cobb-Douglas utility function and consists of
the following equations:

XG
a Pa(1 + Ta

s ) = α a
GG , (7.19)

XG
1 P1(1 + T1

s) = α 1
GG , (7.20)

XG
2 P2(1 + T2

s) = α 2
GG . (7.21)



-52-

7.5 Market Clearing

The final group of equations necessary to define the model is the set of market clearing con-
ditions. For goods A, 1 and 2, total demand is the sum of private and government demand.
Demand for good 3 is the sum of raw capital demand by the two investment sectors. The four
equations are:

Xa = XC
a + XG

a , (7.22)

X1 = XC
1 + XG

1 , (7.23)

X2 = XC
2 + XG

2 , (7.24)

X3 = Xa
3 + Xb

3 . (7.25)

In addition, factor market clearing for labor and capital B requires the following:

L = LP
a + LI

a + Lb + L1 + L2 + L3 , (7.26)

Kb = K1
b + K2

b + K3
b . (7.27)

7.6 Other Equations

In addition to all of the equations above, a price deflator was also incorporated into the
model. The index,ζ , was defined as the cost of the current bundle of consumption and govern-
ment goods at current prices divided by its cost at period zero’s initial prices:

ζ =
XaPa(1 + Ta

s ) + X1P1(1 + T1
s) + X2P2(1 + T2

s)

Xa[Pa(1 + Ta
s )]b + X1[P1(1 + T1

s)]b + X2[P2(1 + T2
s)]b

, (7.28)

where the variables in parentheses subscripted by "b" are base case values.

8 Expectations

The two investment models described in section (6) depend on a number of future variables
that the firms take as given. Strictly speaking, what appears in the optimizations are firms’expec-
tationsof those variables. This means that we must make an assumption about how expectations
are formed in order to be able to link the investment and general equilibrium models. One possi-
bility is to assume that the expectations are "rational", by which we mean that in the absence of
any unforeseen shocks, firms can predict the course of the economy perfectly. To implement
rational expectations the variables needed in the investment model could be taken directly from
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their counterparts in the short-run general equilibrium models. The price of capital appearing in
an investment model, for example, would be exactly equal to the price generated by the general
equilibrium model for the appropriate date. Solving the complete model simultaneously would
yield a path of wages and prices consistent with firms’ planned capital stocks, and also a capital
accumulation plan consistent with wages and prices. Thus, one possible assumption about expec-
tations is that they are rational, which is straightforward to implement.

On intuitive grounds, rational expectations might seem implausible − it appears to require
excessively sophisticated behavior on the part of agents. However, it has one compelling charac-
teristic: it is the only expectations mechanism that is not dominated from an agent’s point of
view; forming expectations any other way means an agent would systematically be wrong about
the future. As long as there are no costs to forming rational expectations, it will always be in an
agent’s interest to do so. For this reason, we will adopt the rational expectations assumption for
many of the simulations described in this paper. There is nothing about the model, however, that
makes this necessary; any expectations mechanism could have been used.

In fact, the actual mechanism in the model contains provisions for introducing particular
departures from complete rationality. The investment problems outlined in section (6) depend on

expectations aboutρ, W, Pa, P3, Td andTs. For each of these, an expectation was formed by
combining its true general equilibrium value with an exogenous component. For example, the
expected wage in the investment submodel,We, was formed out of the true general equilibrium
wage,W, and a fixed expectationWx, as shown below:

We = (W)λ n(Wx)1−λ n , (8.1)

whereλ n was a parameter ranging from zero to one. Whenλ n = 1, firms have perfect foresight;
whenλ n = 0, the expected wage is set to the exogenous valueWx. This procedure was also car-

ried out for expectations of the exogenous variablesTd andTs, but a separate parameter,λ x, was
used.

Parametersλ n and λ x allow simulations to be run under different assumptions about the
extent to which firms can predict future variables. When bothλ n andλ x are set to 1, firms have
perfect foresight. On the other hand, ifλ n = 0 andλ x = 1, firms understand what tax changes are
planned for the future, but they are unable to correctly predict the general equilibrium conse-
quences. Settingλ n andλ x both to zero converts the model to a set of linked static equilibria in
which investment is not affected by anything. The remaining case,λ n = 1 andλ x = 0 is of little
interest.

9 Implementing the Model

We have now completed the economic specification of our small intertemporal general equi-
librium model. Before it can be used to analyze experiments, however, it must be implemented
on a computer. In this section, we describe one way that could be done. The method we present
is straightforward and produces a versatile model that solves quickly. It is by no means the only
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way the model could have been implemented, however. Thus, it is important to distinguish
between the model, described in sections (5) to (8), and the solution method, which is described
below.

There are four tasks to accomplish in implementing a model: selecting the solution algo-
rithm, constructing the data set, partitioning the variables into endogenous and exogenous sets,
and testing the final program. The next four sections describe each of these steps in detail.

9.1 The Solution Algorithm

Solving the two investment problems requires solving a system of differential equations,
while solving the short-run general equilibrium model requires solving a large system of nonlin-
ear equations. Both components of the model must be solved simultaneously, so the entire pro-
cess is not trivial. This section will set out the basic approach used and discuss how close the
numerical solution will be to the true solution.

In order to solve the investment problems of the firms in sectors A and B, the equations of
motion for the two problems were converted to their finite difference equivalents. For sector B
this produced the following expressions:

λ b(t + h) − λ b(t)

h
= (r + δ )λ b(t) − ρe(t)[1 − (Td(t))e] ,  (9.1)

Kb(t + h) − Kb(t)

h
=

1

2We(t)θ b
( λ *

b(t) − Pe
3(t) ) − δ Ka(t) ,  (9.2)

whereλ *
b(t) has been introduced solely for notational convenience, and is given by the expres-

sion:

λ *
b(t) =

λ b(t)

(1 − (Td(t))e)(1 − (Ts(t))e)
. (9.3)

Equations (9.1) and (9.2) were obtained by inserting the appropriate terms from (6.24) and (6.25)
into the general expressions (4.17) and (4.18). The results for sector A are very similar. Notice
that we have been careful to write all the variables as functions of time, and to mark all of the
expected variables with a superscript "e". This will be essential when we link the investment
models to the short-run general equilibrium system.

Equations (9.1) and (9.2) are linear inK andλ b, so if the time paths of the other variables
were known, the complete system of finite difference equations could be solved easily using
Gaussian elimination. Thus, if we only wanted a partial-equilibrium investment model we could
stop here. In a general equilibrium analysis, however, many of those variables are endogenous
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and are not known prior to solving the investment problem. To impose rational expectations, for
example, the expected endogenous variables at all future times must be consistent with the short-
run general equilibrium model.

In practice, expected values are needed for each grid point in the finite difference approxi-
mation. If there areN grid points, there will beN systems like (9.1) and (9.2), each holding at a
different point in time. Every system will require expected values for the endogenous variables,
so the short-run model will have to be solved at each point on the grid. To accomplish this, we
converted the short-run model to its percentage change form45 and then required that the resulting
system hold at each grid point. This produced a set ofN identical linear short-run models, each
holding at a different point in time. In addition, we required that linearized versions of the steady
state formulae forλ a and λ b given in equations (6.17) and (6.26) hold in the final period. Lin-
earizing the short-run model made it necessary to linearize the investment model as well, but that
had an extremely useful consequence: the set of short-run models and the investment model had
both become systems of linear equations. This made it possible to obtain an intertemporal solu-
tion simply by applying Gaussian elimination to a very large system of equations.

The complete model thus entails Taylor series expansions in both time (finite differences)
and variables (linearization). This means the solution is only approximate, so steps must be taken
to ensure that truncation error is kept adequately small. However, the results may be made arbi-
trarily accurate by decreasing the step size used in each expansion, so at least in principle this is
not an insurmountable problem. We will return to this topic in section (9.4).

For the simulations described below, we implemented the model with the following fea-
tures. The terminal time − the point at which the steady state value ofλ was imposed − was cho-
sen to be 100 years in the future. This made the overall solution period of the model [0, 100].
Eleven grid points were used in the finite difference approximation: one at year 0, one at year
100, and nine scattered in between. To obtain adequate numerical accuracy, a nonuniform grid
was used. Thus, the grid points were not necessarily located at multiples of ten years. The subject
of grid spacing will be discussed further in section (9.4).

9.2 The Data Set

The next step in implementing the model was to construct a data set to be used as the base
case. For a static model a base case can usually be assembled from a single input-output table
and a handful of parameters. Intertemporal models, however, require much more data. In princi-
ple, an intertemporal base case consists of an entire string of equilibria stretching far into the
future. This presents a formidable problem because the future equilibria cannot be observed.46

Since the base case cannot be built from observable data, it must be constructed by postulating
future paths for the exogenous variables and finding a corresponding solution to the model. The
difficulty of this depends on what behavior is required of the base case exogenous variables.

45. This is an application of Johansen’s method. For further details on Johansen linearization, refer to chapter 3 of Dixon, Par-
menter, Powell and Wilcoxen.

46. For retrospective (counterfactual) simulations, it may be possible to observe a number of the initial equilibria, but there will
always be some that are unobservable.
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The easiest base case to construct, and the one that has dominated intertemporal modeling
to date, is a steady state. In this approach, the base case values of future exogenous variables are
set to particular constants. Then, the data set for the first year of the base case (which is usually
obtained from historical data) is adjusted so that the model will replicate itself from year to year
as long as the exogenous variables remain at their original values. The result is a base case which
consists of an arbitrary string of future periods which are identical to the initial year. This kind of
scenario is fairly easy to construct because it only requires obtaining a steady state solution to the
model.

For many experiments, a steady state base case is perfectly acceptable. Often the most
important question about a particular shock is how far it pushes the economy away from the base
case path, not how the base case itself is evolving. In this situation, starting from a steady state is
a minor liability which is more than offset by the ease with which the base case can be con-
structed. For this reason, we have chosen to use a steady state base case for the simulations pre-
sented below. Methods for building other kinds of base case are beyond the scope of this book,
but are discussed in Wilcoxen (1988) and Codsi, Pearson and Wilcoxen (1990).

The actual data set we used is presented in appendix A1. It has a number of interesting fea-
tures, but does not represent any particular economy. One of its most important characteristics is
that the patterns of private consumption and government spending are identical, so no composi-
tional effects arise when changes in taxes induce transfers of income between the private and
government sectors. We built this feature into the data set deliberately so it would be easier to
interpret the model’s results.

9.3 Partitioning

Once the solution algorithm and the data set have been prepared, the next step is to decide
on a partitioning of the model’s variables into endogenous and exogenous sets. One of the advan-
tages of using the Johansen approach is that it is easy to change the partition for individual exper-
iments, so the partition established at this stage does not constrain future simulations at all. For
other solution algorithms, however, the partitioning done at this stage will be permanent; it will
be impossible to switch the endogenous and exogenous variables later. Table 9.1 shows the basic
list of exogenous variables used in the experiments discussed below.

Since the price deflator is exogenous, it will be the model’s numeraire. The role of the
numeraire in an intertemporal model differs quite a bit from its role in a static setting. In particu-
lar, the numeraire may have to establish the rate of pure inflation in addition to setting the overall
price level. In the model above, for example, there is no equation describing how the price level
evolves from one year to the next. This means that the rate of pure inflation will be determined
by the path of the numeraire over time. Thus, if the numeraire were constant (as it is in the base
case data set), there would be no pure inflation − the price of the aggregate consumption bundle
would be
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Table 9.1: Exogenous Variables

Symbol Description

Ka Sector A capital (period 0 only)
Kb Sector B capital (period 0 only)
L Total labor supply
G Government spending
Tw Tax on wages
Ta

s Sales tax on good A

T1
s Sales tax on good 1

T2
s Sales tax on good 2

T3
s Sales tax on good 3

Td Dividend tax
Ts Investment subsidy
γ1 Technical change parameter, industry 1
γ2 Technical change parameter, industry 2
γ3 Technical change parameter, industry 3
ρ x Exogenous expectations, rental price
Wx Exogenous expectations, wage rate
Px

3 Exogenous expectations, raw capital price
Px

a Exogenous expectations, price of good A

Tdx
Exogenous expectations, dividend tax rate

Tsx
Exogenous expectations, investment subsidy

r Interest rate
ζ Price deflator
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constant from one year to the next. On the other hand, if the base case numeraire rose by 5 per-
cent a year, the model would embody a 5 percent rate of pure inflation. Thus, it is possible to
think of the numeraire as having two distinct roles: determining the level of prices in the first
period, and selecting the rate of growth of the price level over time. A more detailed model might
include a money demand equation and an exogenous supply of money, in which case the price
level and the rate of pure inflation would be determined by the (exogenous) money supply. In the
absence of an explicit model of the money market, the numeraire performs the same function.

A second consequence of this choice of partition is that since government spending is
exogenous and the lump sum payment is endogenous, any revenue accruing from changes in tax
rates will be passed back to households. This is convenient for the simulations we discuss below,
but there are other alternatives. In some applications, for example, it may be more useful to make
the lump sum tax exogenous and government spending endogenous. As we mentioned earlier,
however, one of the advantages of the Johansen method is that the partition can be changed at any
time.

A final important feature of the partition is that the interest rate is exogenous. This results
from the structure of the consumer problem described in section (7.3). Since the consumer
always saves exactly what firms want to invest, the supply of savings is perfectly elastic with
respect to the interest rate. Thus, we have little choice but to make the interest rate exogenous. If
we wanted the financial market to be more realistic, we could introduce an upward-sloping sav-
ings supply curve by changing the consumer model to include intertemporal optimization. In this
paper, however, we limit intertemporal modeling to investment in order to keep the exposition as
clear as possible.

9.4 Testing the Complete Model

Once the two finite difference investment modules were combined with the eleven general
equilibrium models, and the entire system was linearized, a number of special experiments were
run to check that the model was programmed correctly. This is an essential step if the numerical
results of the model are to be believed. Three simulations were used: a homogeneity test, a sur-
prise dividend tax at time zero, and an increase in the tax on wages.

The homogeneity test consists of a simultaneous increase in the price deflator and the nomi-
nal lump sum payment. The effect of this should be to raise all nominal variables by the amount
of the increase, and to leave all real variables unchanged. The model produced this result cor-
rectly which indicated that it was free of gross programming errors. The second test was slightly
more interesting. As noted in section (3), increasing the dividend tax at time zero is an unavoid-
able pure profits tax. As such, it should have no effect on the capital stock or output of any indus-
try, although dividends and firm values should fall by the amount of the tax. There should also be
a large shift of income from consumers to the government, but since both sectors have the same
patterns of demand, there will be no compositional effects. These results were also correctly gen-
erated by the model. The final test was an increase in the wage tax paid by consumers. Since
labor supply is completely inelastic, the effect of a wage tax should be a simple transfer of
income to the government. Again the model produced the correct results. Together these
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experiments provide strong (albeit indirect) evidence that the model’s implementation was free of
programming errors. Having verified this, it was necessary to check that the linearized model
would correctly converge on less trivial experiments.

In a purely mathematical sense, the model is a system of partial differential equations in
time and variables which are solved by integrating over time using finite differences and over
variables using Euler’s method.47 The accuracy of the solution depends on the step size used in
these integrations: the solution will approach the true solution as the step size in both time and
variables is made infinitesimal.48 To verify that the model was formulated correctly, it was neces-
sary to show that the numerical solution could be made arbitrarily close to the true analytical
solution for a particular experiment. Incidently, this shows how accurate results can be obtained
with a fairly small number of steps in each dimension.

As discussed in section (4), for most experiments it is impossible to obtain an analytical
solution to the investment problem of either firm. One exception, however, is an announced
increase in the dividend tax. Under partial equilibrium (no feedback from the firm’s decision to
the variables it takes as given), the analytical solution to a dividend tax experiment can be
obtained in a straightforward manner.49 By comparing the results of numerical simulations to the
analytical solution, the accuracy of the former can be assessed.

The actual experiment we used was an increase in the dividend tax rate from 10 percent to
20 percent, to take effect ten years in the future. The expectation parameters discussed in section
(8) were set toλ n = 0 andλ x = 1, so firms ignored any feedback effects from their actions to the
price variables in their investment decisions. The results of the experiment were discussed in
detail in section (3), where the analysis went roughly as follows. The announcement of the tax
causes firms to pay large dividends immediately before the tax takes effect. This drives down
investment, so when the tax is implemented the capital stock will be lower than it would have
been. Once implemented, however, the tax falls on pure profits, so firms return to their pre-
announcement behavior and the economy gradually returns to the original steady state capital
stock, although owners of capital have suffered a windfall loss.

To assess the accuracy of different numerical solutions, we examined how well they cap-
tured the true value of the capital stock in year ten. This is a good measure of the overall accu-
racy of a solution because the true path has a cusp at that point. Recall from section (4) that trun-
cation error will be large in regions where the high-order derivatives dropped from the difference
formulae are large. At a cusp, the first derivative changes discontinuously and the second deriva-
tive goes through infinity. In a numerical simulation, this will manifest itself as rounding of the
solution near where the cusp should be.

The results of several experiments are shown in table 9.2.50 The rows indicate how many

47. See chapter 3 of Dixon, Powell, Parmenter and Wilcoxen for an explanation of how Johansen linearization is related to Euler’s
method.

48. As shown in chapter 3 of Dixon, Parmenter, Powell and Wilcoxen, truncation errors in the Johansen linearization can be made
arbitrarily small by applying the shock in a series of small steps.

49. This is discussed in detail in one of the exercises.

50. The values in this and subsequent tables were computed using slightly different difference formulae from those shown in section
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steps were used to impose the exogenous shock, while the columns show how many grid intervals
were used in the finite difference approximation. Each entry gives the value ofK(10) obtained
with a particular combination of iterations and grid points. Step sizes decrease downward and to
the right, so the solution should become more accurate in those directions. The bottom row was
obtained by solving the investment model without linearizing. Since that is equivalent to using
an infinitesimal step size, the row is labeled "infinite" iterations.

Table 9.2: The Effect of Grid Density and Iterations
on the Value of the Capital Stock at Period 10*

Number of Grid Intervals
Iteration 10 20 40 80

1 .9623 .9376 .9247 .9180
2 .9605 .9361 .9236 .9174
4 .9596 .9353 .9233 .9171
8 .9591 .9350 .9229 .9169

∞ .9586 .9346 .9227 .9168

* The true value ofK(10) is .9113

Several things are readily apparent. First, increasing either grid density or iterations
improves the solution. Second, because first-order Taylor expansions form the basis of the lin-
earizations in each dimension, the difference between values obtained from successive halvings
of the step size decreases by roughly a factor of two. Third, from the initial 1-iteration, 10-grid-
interval solution, accuracy increases most rapidly by increasing the number of finite difference
grid points. This indicates that the error introduced by the finite difference approximation over-
whelms that of the Johansen linearization. In fact, doubling the grid density improves the solu-
tion by more than increasing the number of Johansen iterations to infinity. This shows that
Johansen linearization error is trivial, but that introduced by finite differences may not be.

As noted in section (4), for large models it may not be feasible to eliminate finite difference
truncation error by using a vast number of grid points. For such models, however, it is possible to
improve the approximation by shifting grid points from regions of low curvature to regions of
high curvature. In practice this involves moving points from late years, say year 80 or 90, to times
nearer implementation of the policy. Table 9.3 shows five possible allocations of nine points to
times between 0 and 100 years.

For an announced tax change which is to be implemented in year 10, the system will almost
be back to the steady state at late years like 90. High-order derivatives of the model’s variables
will be close to zero there, so it might be desirable to move such points to an earlier time where

(9). Implementing the model as it is described in this paper would produce slightly different, but qualitatively similar, results.
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the derivatives are large. One possibility would be to shift the point from year 90 to year 5; this is
shown in grid B above. Continuing the rearrangement produces the set of grids shown in the
table. The dividend tax was then simulated over each grid, producing the results shown in table
9.4. Again, results are shown for several iterations over the shock.

Table 9.3: A Selection of Grid Spacings

Grid
Point A B C D G

0 0 0 0 0 0
1 10 5 5 5 5
2 20 10 7 7 7
3 30 20 10 9 9
4 40 30 20 10 10
5 50 40 30 20 15
6 60 50 40 30 20
7 70 60 50 40 35
8 80 70 60 50 50
9 90 80 70 60 75

10 100 100 100 100 100

Table 9.4: The Effect of Grid Choice and Iterations
on the Value of the Capital Stock at Period 10*

Grid
Iterations A B C D G

1 .9623 .9407 .9323 .9233 .9199
2 .9605 .9392 .9310 .9226 .9192
4 .9596 .9384 .9303 .9222 .9187
8 .9591 .9381 .9300 .9219 .9185

∞ .9586 .9377 .9297 .9217 .9183

* The true value ofK(10) is .9113

Table 9.4 demonstrates two important properties. First, using a non-uniform grid does not
harm convergence when the number of iterations is increased. This can be seen by reading down
the columns. Second, rearranging a limited number of grid points can produce a solution almost
as accurate as increasing the density of a uniform grid by a factor of eight. This means that using
a limited number of grid points does not necessarily produce an unreasonable amount of finite
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difference truncation error.

At this point, we have verified that our computer implementation of the model behaves cor-
rectly for a variety of experiments. It has produced correct results for the homogeneity test, the
surprise dividend tax test and the wage tax test. In addition, we have subjected it to a more diffi-
cult test by computing numerical solutions to an experiment whose analytical results are known.
Since it has passed all of these tests, it can now be used to run simulations.

10 Some Illustrative Simulations

We had two motives for presenting the model above. The first was to demonstrate how an
intertemporal general equilibrium model can be built; that task has now been accomplished. The
second goal was to show that building such models is worthwhile; it is to that topic that we will
now turn. The evidence we present will be a number of simulations whose results could not have
been obtained from either a short-run general equilibrium model or a partial-equilibrium invest-
ment model. Of course, there are many experiments for which one or the other of those tech-
niques is perfectly adequate. We will not argue that an intertemporal general equilibrium model
is always necessary; just that it is a very useful approach for certain problems.

10.1 The Importance of Foresight

Having gone to all the trouble of integrating the two kinds of model, one question we might
ask is whether we have improved the original investment model. Does it matter that general equi-
librium linkages have been added, or was the partial-equilibrium model just as good? The answer
depends on what assumption we want to make about agents’ expectations. If we are content to
give them beliefs about the future that are exogenous and completely fixed, then nothing has been
gained by moving to an integrated model. On the other hand, if we want agents to have rational
expectations, adding the short-run general equilibrium models makes that possible. This suggests
an important question: does it matter whether expectations are rational?

Using our integrated model, it is possible to test precisely that point. The expectations
parameters,λ n andλ x, allow us to run simulations under either perfect foresight or fixed expecta-
tions. Setting both parameters to one produces perfect foresight; setting either of them to zero
produces some form of fixed expectations. One case of fixed expectations is somewhat appeal-
ing: perhaps agents have perfect foresight with respect to taxes but have fixed beliefs about
prices. To be concrete, a firm might know the future path of the dividend tax accurately from
government proclamations, but be completely unaware that the tax will end up changing the
wages and prices it faces. This form of expectations can be simulated by settingλ x to one andλ n

to zero. To see whether this differs significantly from perfect foresight, we can run a typical
experiment under the two assumptions aboutλ n andλ x.

The experiment we chose was an announced change in the dividend tax from 10 percent to
20 percent to be implemented in period ten. In this experiment, and all of the others described
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below, ten finite difference intervals were used with grid points placed according to column G in
table 9.3. The dividend tax experiment was chosen because it has no permanent effect on prices
and wages. Thus, even the agents without perfect foresight will not be wrong forever.

The results of these two simulations are shown in figure 10.1. Each graph gives the percent-
age change in a particular variable from its base case value in the corresponding year. Different
panels show capital stocks A and B, investment A and B, the wage, the rental price of capital B,
the price of good A, dividends paid by sectors A and B and consumption. Consumption is
unchanged in the long run because the government returns any extra revenue through lump-sum
payments. The paths marked "P" are for perfect foresight; those marked "F" are for fixed expec-
tations.

The striking feature of figure 10.1 is that perfect foresight with respect to prices and wages
attenuates the response of the model by about 50 percent. This affect even occurs in period zero:
investment falls less than half as much under perfect foresight. The reason the simulations are so
different is that as the capital stock declines, the price of each firm’s output rises in response.
This keeps returns higher in the period before implementation, so the firms with foresight will not
let their capital stock deteriorate as fast as those expecting the price to be unchanged.

One other important feature of the results is that many of the variables change substantially
in the period before the tax is implemented. This demonstrates the second part of our assertion
about the usefulness of building intertemporal models: intertemporal optimization by investors
can have a substantial effect on the economy even before an anticipated event occurs. In a static
model, expectations of future policy changes can never affect current variables.

From this simulation we conclude that adding general equilibrium effects has changed the
investment model substantially. To the extent that agents have rational expectations, a partial
equilibrium investment model will overstate the response of investment and the capital stock to
any given shock. Moreover, the inaccuracy can be as much as 50 percent. Finally, both sets of
results also show that intertemporal effects can have significant consequences for ordinary gen-
eral equilibrium variables.

10.2 Indirect Dynamic Effects

Another advantage of the integrated model is that it can be used to study the dynamic
effects of policies which only influence the investment problem indirectly. One example of this
would be a change in sales taxes. Sales taxes do not appear in either firm’s investment problem
because the firms are only interested in the price they receive, not in what purchasers actually pay.
In general equilibrium, of course, changing sales taxes would usually change the prices faced by a
producer. Thus, even though sales taxes do not enter the investment model explicitly, they can
still affect it by changing the prices that do appear in the problem. Using the integrated model
allows these effects to be captured. This section presents two sales tax simulations, each of which
highlights a different characteristic of the model.
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Figure 10.2 shows the effect of an announced increase in the sales tax on good A to be
implemented at year ten. The general equilibrium effect of the tax is to raise purchaser prices and
lower producer prices. This makes investment in sector A less attractive, so its capital stock
begins to decline. The path of sector A’s investment and capital stock is very similar to that dis-
played in exercise (E1), and comes about for the same reason: there is a decline in the producer
price of good A. The shock has a modest effect on industry A, reducing its long run capital stock
by about 6 percent.

The decline in sector A has effects throughout the economy. It frees up labor that used to be
employed in sector A, causing a drop in the wage rate. Lower wages benefit sector B by lowering
its investment costs, soI b increases andKb rises over time. This drives down the rental price of
capital B, so producer prices of goods 1, 2 and 3 must fall since the wage also fell. The producer
price of good A also falls, although the purchaser’s price has risen because of the tax.

The behavior of sector A’s dividend stream is striking: before the tax is implemented,Da

actually increases. As discussed in exercise (E1), this comes about because investment drops in
anticipation of the tax, leaving more earnings to be distributed as dividends. Once the tax is in
place, however, fewer dividends can be paid soDa drops below its base case value. The present
value of the change in the dividend stream is negative, so the tax results in a windfall loss to own-
ers of the firm.

To summarize this experiment, an anticipated change in a sales tax can produce interesting
intertemporal effects that could not be captured by either a partial-equilibrium investment model
or a static general equilibrium model. This point is further emphasized by a second sales tax
experiment which introduces a shock that is even further removed from the investment models:
an increase in the tax on good 2. Sector 2 does not do any investment itself, so the effect on
investment of increasing the sales tax on good 2 will only occur through indirect general equilib-
rium linkages.

The results of simulating an increase inT2
s are shown in figure 10.3. The main difference

between this and the previous experiment is that the capital stock in both sectors A and B rises
over time. The source of this curious result is that sector 2 is very large and very labor intensive.
A small contraction in its output leads to a substantial drop in the wage. This lowers investment
costs for both sectors A and B, so investment rises and both capital stocks grow. Finally, growth
of the capital stocks causes the rental price of capital B and the price of good A to fall. In the
end, sector A has gained, producing slightly higher dividends, while sector B’s dividends have
fallen considerably.

Overall, the three simulations presented in this section indicate the wide variety of experi-
ments that can be analyzed using an intertemporal general equilibrium model which could not be
studied in a static or partial equilibrium context. For many policy questions, this will easily jus-
tify the extra work required to build an intertemporal model.
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11 Goals, Reading Guide and References

In this paper we have tried to illustrate the basic techniques used in intertemporal modeling
and to show how they can be applied in building an intertemporal general equilibrium model. We
believe that by reading it and working through the exercises, you will develop the skills needed to
understand the intertemporal models you come across in the literature and to be able to build your
own. In particular, we hope you will

(1) be able to discuss what circumstances call for the use of an intertemporal model;

(2) understand how to build theoretical models of intertemporal decisions from basic principles
such as arbitrage, and to understand q-theoretic investment models in particular;

(3) be able to use graphical techniques such as phase planes to describe in qualitative terms
how an intertemporal model will respond to a shock;

(4) be familiar with numerical methods that can be used when it is necessary to obtain quantita-
tive results from an intertemporal model;

(5) know how to integrate intertemporal decisions into general equilibrium models, and be able
to discuss what costs and benefits that entails.

Intertemporal modeling uses a number of mathematical methods that you may not have
encountered before. The reading guide for this paper is intended to help you fill in gaps in your
knowledge of optimal control, differential equations, numerical methods and linear algebra. It
also includes a number of references to particularly important or useful parts of the economic lit-
erature on intertemporal analysis.
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Reading Guide, part 1
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Reading Guide, part 2
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E1. The Effects of a Price Shock

Section (3) explored the consequences of a dividend tax change for the model of section (2).
There are, however, several other interesting experiments that can be examined with the model.
One of these is an increase in the price of the firm’s output, which will be the subject of this exer-
cise. For convenience, the model’s investment equation and equations of motion are shown
below:

I =
1

2wθ
(

λ
1 − Td

− Pk) ,  (2.34)

λ′ = (r + δ )λ − β (P)(1 − Td) ,  (2.35)

K ′ =
λ

2wθ (1 − Td)
− δ K −

Pk

2wθ
. (2.36)

(a) Using a phase diagram, show the effect of an unexpected immediate, permanent increase in
the price of the firm’s output. Also, sketch the paths of the multiplier, investment and the capital
stock over time. Briefly explain the results.

(b) Using another phase diagram, show the effect of a permanent increase in the firm’s output
price expected to occur in two years. Again, sketch the time paths of the model’s variables.

(c) Finally, use a third phase diagram to analyze the effect of an anticipated temporary increase
in the price of the firm’s output lasting for three years. That is, investors believe that the price
will rise immediately, stay high for three years, and then fall back to its original value. Sketch the
paths of the variables.

******** Answer ********

(a) The phase diagram and time paths of the variables for a surprise permanent increase in the
price of the firm’s output are shown in figure E1.1. The increased output price immediately raises
the marginal value of additional capitalλ , so the system jumps from point A to point B. Since
the price of raw capital goods has not changed, the firm expands investment until higher adjust-
ment costs raise the price of installed capital to the new value ofλ . With higher investment, the
capital stock rises asymptotically toward its new steady state level at C.

(b) The phase diagram and graphs of the dynamic variables are shown in figure E1.2. These
results differ quite a bit from those of the previous experiment. When news of the price increase
first arrives,λ jumps part way toward its new steady state value. It does not jump all the way,
however, because the higher price will not be obtained for several years. In the period between
announcement and implementation of the new price,λ rises exponentially toward the new stable
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path, arriving there just as the price increase occurs. Investment follows the path ofλ , jumping
upward at the announcement and then rising steadily toward its new steady state value. The capi-
tal stock is drawn upward by the higher level of investment, reaching a peak rate of growth at the
instant of implementation. After that it continues to grow, but at a slower rate. Over time, it
asymptotically approaches the steady state.

(c) This experiment is the most interesting of the three. The phase diagram and variable paths
are shown below in figure E1.3. In this case, a temporary increase in the output price leads to an
upward jump inλ from point A to B at the instant the price rises. This occurs because the
increased output price raises the returns to capital, at least for a while.

After the initial jump, the system moves downward and to the right under the control of the
equations of motion holding at the higher price. The intuitive reason for this is quite interesting.
Whenλ rises, so does investment. Higher investment leads to growth in the capital stock, so the
system moves toward the right. At the same time, the remaining period of higher prices becomes
steadily shorter. This causesλ to fall back toward its initial value, pushing the system downward.
As λ falls, however, so does investment. Eventually, a point is reached where investment just
covers depreciation of the higher capital stock. On the phase diagram, that point occurs where the
dynamic path crosses theK ′ = 0 locus, as indicated by point C in the figure.

At point C, the system is moving straight down. Investment is just enough to maintain the
captial stock, butλ is still declining. Past C, the model begins moving downward and to the left.
The value ofλ has fallen so much that investment is no longer enough to offset depreciation and
the capital stock begins to erode. This continues until the price finally returns to its original
value. At that time the system will have reached point D. At D,λ and investment are back to
their original values, but the capital stock is somewhat higher than its steady state value. Thus,K
continues to erode, gradually returning to its initial value.

An interesting feature of this experiment is that the dynamic path crosses theK ′ = 0 locus.
This demonstrates that the loci do not necessarily confine the model to a particular quadrant.
However, if the system does cross one of the loci, the derivative of the corresponding variable
must be zero (by definition of the loci). In this experiment, for example, the derivative of the cap-
ital stock at point B must be zero; the dynamic path can only cross theK ′ = 0 locus while moving
vertically. This feature also allows an interesting fact to be deduced about the solution: point D
cannot lie to the left of the initial steady state. If it did, the system would have to cross theK ′ = 0
locus a second time. Since that can only occur while the path is moving vertically,λ would have
to be rising. However,λ falls continuously after its initial jump, so the path cannot rise and can-
not recross theK ′ = 0 locus. It must, therefore, intersect the original stable path at or to the right
of the original steady state.

E2. The Effects of a Rise in the Price of Capital Goods

A second interesting experiment that can be explored with the model of section (2) is a
change in the price of capital goods. Again, the model’s key equations are repeated below for
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convenience:

I =
1

2wθ
(

λ
1 − Td

− Pk) ,  (2.34)

λ′ = (r + δ )λ − β (P)(1 − Td) ,  (2.35)

K ′ =
λ

2wθ (1 − Td)
− δ K −

Pk

2wθ
. (2.36)

(a) Using a phase diagram, explain the consequences of an unexpected immediate permanent
fall in the price of capital goods. Sketch the paths ofλ , investment and the capital stock over
time.

(b) Now use a second phase diagram to illustrate what happens if the fall inPk is anticipated
several years in advance. Are the results what you expected? Discuss.

******** Answer ********

(a) A fall in the price of capital goods shifts theK ′ = 0 locus to the right, as shown in figure
E2.1. Theλ′ = 0 locus is completely unaffected, however, soλ is already at its new steady state
value and does not jump when the price change occurs. From equation (2.34), the lower price of
capital leads to a higher level of investment, even with no change inλ . This, in turn, leads to cap-
ital accumulation, so the system moves gradually from the initial steady state at A toward the new
steady state at B.

(b) Surprisingly, knowing about the price decline in advance does not change the behavior of
firms at all. As shown in figure E2.2 below, the model remains at the initial steady state until the
change actually occurs. After that, it proceeds in precisely the manner described in part (a).

At first this result appears peculiar. Intuitively, it seems as though the firm should be able to
gain by postponing some investment just before the price decline and doing more investment
later. The key, however, is adjustment costs. Recall thatλ is unaffected by the shock. Sinceλ is
the marginal benefit of additional capital goods, investment after the price change proceeds until
adjustment costs rise just enough to make the cost of installed capital equal toλ . At that point, it
would not be optimal for the firm to do more investing because the marginal cost of installed cap-
ital would be greater than its benefit. Thus, the firm would not want to move marginal units of
investment from the instant before the price drop to the instant after it because those units will be
just as expensive when adjustment costs are taken into account.

This point is illustrated in figure E2.3 which shows the marginal cost and marginal benefit
of investment before and after the change in the price of capital goods. The marginal cost curve
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does, indeed, shift down. However, switching investment from before the change to after it
entails saving an amount shown by box A, while spending the amount shown by box B. Clearly,
this is a net loss to the firm, so investment will not be shifted across time. Thus, although the pur-
chase price of new capital goods has fallen, the marginal cost of investment faced by the firmat
its new optimumis unchanged. This means that it is not profitable for the firm to postpone invest-
ment.

E3. Adding More Taxes to the Investment Model

Now consider an economy in which there are two financial assets: government bonds and
equities issued by corporations. Bonds pay a fixed rate of return and there is no inflation. The
government levies three taxes: a dividend tax, a tax on interest payments, and a tax on capital
gains. The earnings (short run profits) of firms are a function of wages, prices and the capital
stock, but not a function of investment. On the other hand, investment costs depend on wages,
prices and investment, but not on the capital stock. Firms take wages, prices, tax rates and the
interest rate to be exogenous. Thus, this economy is similar to that of section (2), except that
there are two additional taxes.

(a) Write down the arbitrage equation for this economy and explain what it means. Using the
arbitrage equation, solve for an explicit expression for the value of the firm in terms of the earn-
ings and investment cost functions and the model’s exogenous variables. What transversality
equation did you use? How should it be interpreted?

(b) Assuming the firm chooses investment to maximize its stock market value, write down the
investment problem, form the Hamiltonian, and find the first order conditions.

(c) Suppose the earnings and investment cost functions have the form shown below, whereβ is
function of wages and prices,K is the capital stock,Pk is the price of new capital goods,I is the
level of investment, andθ is a parameter:

E = β (P)K , (E3.1)

C =
Pk I 2

2θ
. (E3.2)

Using this information and the results obtained in part (b), find the first order conditions for this
particular problem. Then find an expression for investment in terms of other variables. Finally,
using the investment equation to eliminate investment from the other first order equations, show
that the model’s equations of motion are the following:

λ′ = ( r
1 − Ti

1 − Tc
+ δ )λ − B(P)

1 − Td

1 − Tc
, (E3.3)
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K ′ =
λθ
Pk

(
1 − Tc

1 − Td
) − δ K . (E3.4)

******** Answer ********

(a) Arbitrage will equate after-tax returns on bonds and equity, so in equilibrium the following
expression must hold:

(1 − Ti )rV = D(1 − Td) + V′(1 − Tc) ,  (E3.5)

wherer is the interest rate on bonds,V is the value of the firm,D is the dividend paid by the firm,
and theT’s are the three tax rates. The left side of (E3.5) is the after-tax return onV dollars of
bonds, while the right side is the after-tax return onV dollars of equity.

The arbitrage condition in (E3.5) is a differential equation describing the evolution of the
value of the firm. To find an explicit expression for the firm’s value, start by rearranging (E3.5) to
obtain:

V′ −
1 − Ti

1 − Tc
rV = −

1 − Td

1 − Tc
D . (E3.6)

This form suggests the equation can be solved using the integrating factor shown below:

e−R(0,t) , (E3.7)

whereR(a, b) is defined by:

R(a, b) =
b

a
∫ r (v)

1 − Ti (v)

1 − Tc(v)
dv . (E3.8)

Expression (E3.8) takes the form of an integral because the two tax rates (and the interest rate) are
not necessarily constant over time. If they were, (E3.8) would simplify to:

R(a, b) = r
1 − Ti

1 − Tc
(b − a) ,  (E3.9)

which is similar in form to the integrating factor used in section (2).

Multiplying (E3.6) by (E3.7) converts the left side of (E3.6) into an exact differential, so it
is easy to show that the following is true:
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(V′ −
1 − Ti

1 − Tc
rV)e−R(0,t) =

d(Ve−R(0,t))

dt
. (E3.10)

Thus, after multiplying by the integrating factor, (E3.6) can be integrated over [t,∞) to give:

s→∞
lim V(s)e−R(0,s) − V(t)e−R(0,t) = −

∞

t
∫

1 − Td

1 − Tc
De−R(0,s)ds . (E3.11)

At this point, we assume that the limit in the left-most term of (E3.11) is zero. This is
known as a transversality condition, and it will be true as long as the value of the firm grows
more slowly than the tax-adjusted interest rate as time tends toward infinity. The best way to
interpret it is to look at what behavior it rules out. If the value of the firm were to grow more
rapidly than the interest rate, for the arbitrage condition (E3.5) to hold, the firm would have to pay
negativedividends; otherwise, no one would be willing to hold bonds. Thus, the transversality
condition rules out firms whose value grows more rapidly than the tax-adjusted interest rate for-
ever even though they pay negative dividends. In recognition of the Ponzi swindle, the transver-
sality condition is often said to prohibit infinitely-lived Ponzi schemes.

After applying the transversality condition and rearranging slightly, we obtain an explicit
equation for the value of the firm at any timet:

V(t) =
∞

t
∫

1 − Td

1 − Tc
De−R(t,s)ds . (E3.12)

Note that use has been made of the following property:

e−R(0,s) ⋅ eR(0,t) = e−R(t,s) , (E3.13)

which can be shown to be true from the definition ofR(a, b).

(b) From (E3.12) and the capital accumulation constraint, the firm’s problem at timet can be
stated as follows:

max
∞

t
∫

1 − Td

1 − Tc
De−R(t,s)ds , (E3.14)

subject toK ′ = I − δ K . (E3.15)

The appropriate Hamiltonian for this problem is:
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H =
1 − Td

1 − Tc
De−R(t,s) + Λ(I − δ K) .  (E3.16)

The first-order conditions are obtained by differentiation:

∂H

∂I
=

∂D

∂I
(
1 − Td

1 − Tc
) e−R(t,s) + Λ = 0 ,  (E3.17)

∂H

∂K
=

∂D

∂K
(
1 − Td

1 − Tc
) e−R(t,s) − δ Λ = − Λ′ , (E3.18)

∂H

∂Λ
= I − δ K = K ′ . (E3.19)

It is convenient to introduce the following transformation ofΛ to eliminate the discount factors:

Λ(s) = λ(s)e−R(t,s) . (E3.20)

Differentiating this with respect to future times gives:

Λ′(s) = 


λ′(s) − r (s)
1 − Ti (s)

1 − Tc(s)
λ(s) 


e−R(t,s) . (E3.21)

Inserting (E3.20) and (E3.21) into (E3.17) and (E3.18) gives:

∂D

∂I
(
1 − Td

1 − Tc
) + λ = 0 ,  (E3.22)

∂D

∂K
(
1 − Td

1 − Tc
) − δ λ = − λ′ + r

1 − Ti

1 − Tc
λ . (E3.23)

Equations (E3.19), (E3.22) and (E3.23) are the model’s first-order conditions.

(c) Equations (E3.1) and (E3.2) can be used to obtain the dividends function for the firm. Since
dividends are the difference between earnings and investment, the following must be true:

D = E − C . (E3.24)

Inserting (E3.1) and (E3.2) gives:
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D = β (P)K −
Pk I 2

2θ
. (E3.25)

Equation (E3.25) can be differentiated to provide the differentials needed in (E3.22) and (E3.23):

∂D

∂I
= −

Pk I

θ
, (E3.26)

∂D

∂K
= β (P) .  (E3.27)

Inserting these into (E3.22), (E3.23) and (E3.19), and rearranging a bit, produces the particular
first-order conditions for this problem:

λ =
Pk I

θ
(
1 − Td

1 − Tc
) ,  (E3.28)

λ′ = ( r
1 − Ti

1 − Tc
+ δ )λ − β (P)

1 − Td

1 − Tc
, (E3.29)

K ′ = I − δ K . (E3.30)

Equation (E3.28) can be solved for investment as a function ofK andλ :

I =
λθ
Pk

(
1 − Tc

1 − Td
) .  (E3.31)

Using this to eliminate investment from (E3.30) produces the system’s equations of motion:

λ′ = ( r
1 − Ti

1 − Tc
+ δ )λ − β (P)

1 − Td

1 − Tc
, (E3.32)

K ′ =
λθ
Pk

(
1 − Tc

1 − Td
) − δ K , (E3.33)

where equation (E3.32) is just (E3.29) repeated for clarity.
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E4. The Effects of a Capital Gains Tax

This exercise explores the qualitative effects of a change in the capital gains tax introduced
in exercise (E3). Use the equations of motion from part (c) of that exercise to answer the follow-
ing questions.

(a) Construct a phase diagram for the model and label the important features of it clearly. Be
sure that each locus has the correct slope.

(b) Draw another phase diagram and use it to analyze the effects of an unexpected permanent
decrease in the capital gains tax. Show the initial and final steady states and the transition path.
Sketch the paths of the multiplier (the costate variable), investment and the capital stock over
time. Identify any important characteristics of the path and interpret it briefly.

(c) Draw a third phase diagram and use it to illustrate the effects of a permanent decrease in the
capital gains tax announced several years in advance. Sketch the paths of important variables and
interpret the solution. Does anticipation of the shock lead to any interesting or perverse effects?

(d) Finally, suppose the government surprises investors with a temporary drop in the capital
gains tax. The tax is lowered immediately, kept low for several years, and then returned to its
original level. Investors understand the new policy, and realize that the tax change is temporary.
Analyze this shock using an appropriate phase diagram.

******** Answer ********

(a) The phase diagram for the model is shown in figure E4.1. It is very similar to the phase dia-
gram derived in section (2), except that the loci are located in somewhat different positions due to
the additional taxes.

(b) The phase diagram and intertemporal paths of capital, the multiplier (λ) and investment are
shown in figure E4.2. The most interesting consequence of the shock is thatλ falls while the cap-
ital stock rises. The latter comes about because even thoughλ falls, the implicit cost of invest-
ment drops more because of the reduction in the capital gains tax. In terms of equation (E3.31),
the drop inTc pushs investment up more than the reduction inλ lowers it.

(c) The diagrams for this section are shown in figure E4.3. An interesting and important fea-
ture of the result is the decline in the capital stock which occurs after the policy is announced but
before it is implemented. The intuition behind this result is exactly the same as in the case of an
announced dividend tax: after the policy has been implemented, the tax rate on capital gains rela-
tive to dividends is lower, so firms find it optimal to shift shareholder returns toward capital gains
and away from dividends. This is accomplished by paying higher dividends before the policy is
implemented, which drives down the capital stock, allowing it to grow rapidly after implementa-
tion. This could be described as a perverse effect because the policy causes a short term deteriora-
tion in K even though it increasesK in the long run. Thus, anticipation causes the short and long
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term effects to have opposite sign.

(d) The diagrams are shown in figure E4.4. When the tax change is only temporary, there is no
permanent effect on the capital stock. However, in the short run there will be a burst of growth in
K until the tax is returned to its initial level. At that point, the capital stock begins to decline
back to its original value. The intuition behind this is another variation on the theme discussed in
part (c): the temporary drop in the capital gains tax makes capital gains (rather than dividends) a
more effective way of transferring earnings to the stockholders. Thus, when the tax is low, firms
do a lot of investment, raising the capital stock and producing capital gains for the stockholders.
Once the tax is removed, investment returns to its original level and the capital stock begins to
deteriorate back to the initial steady state.

E5. Diminishing Returns

Now consider an economy similar to that of exercise (3) but with diminishing returns to
capital in the earnings function. In particular, suppose everything is the same except that earnings
are given by:

E = β (P) ln(K) ,  (E5.1)

whereβ , P andK have the same interpretation as before. SinceK has been replaced by its natu-
ral logarithm, the second derivative of the earnings function will be negative. This means that
marginal earnings decrease as the capital stock increases, so from the firm’s point of view, there
are diminishing returns to capital.

(a) Starting from the general results obtained in part (b) of exercise (E3), derive the firm’s first
order conditions. From those, solve for investment as a function of other variables. Finally, solve
for the model’s equations of motion.

(b) Construct a phase diagram for the model and discuss how it compares to the one obtained
in part (a) of exercise (E4).

(c) Using a phase diagram, analyze the effects of an unexpected permanent increase in the tax
on interest payments. Show the initial and final steady states, and also the transition path. Sketch
the paths of the multiplier, investment and the capital stock over time.

(d) Now draw a third phase diagram and use it to illustrate the effects of a permanent increase
in the interest tax announced several years in advance. Sketch the paths of important variables
and interpret the solution.

******** Answer ********
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(a) In part (b) of exercise (E3), the general first order conditions for optimization in investment
models of this type were shown to be the following:

I − δ K = K ′ , (E3.19)

∂D

∂I
(
1 − Td

1 − Tc
) + λ = 0 ,  (E3.22)

∂D

∂K
(
1 − Td

1 − Tc
) − δ λ = − λ′ + r

1 − Ti

1 − Tc
λ . (E3.23)

To obtain the specific first order equations for this model, the next step is to construct the divi-
dend function. As in part (c) of exercise (E3), dividends are earnings less investment costs:

D = E − C . (E5.2)

Applying equations (E5.1) and (E3.2) gives the following:

D = β (P) ln(K) −
Pk I 2

2θ
. (E5.3)

Differentiating (E5.3) provides the terms needed in equations (E3.22) and (E3.23):

∂D

∂I
= −

Pk I

θ
, (E5.4)

∂D

∂K
= β

(P)

K
. (E5.5)

Of these, only the second equation has changed from exercise (E3). Since∂D/∂I has not
changed, it is straightforward to show that the investment function and capital accumulation equa-
tion will be identical to those found in part (c) of (E3):

I =
λθ
Pk




1 − Tc

1 − Td



, (E3.31)

K ′ =
λθ
Pk




1 − Tc

1 − Td



− δ K . (E3.33)
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However, the difference in∂D/∂K changes the remaining first order condition considerably.
Inserting (E5.5) into (E3.23) produces the following:

λ′ = ( r
1 − Ti

1 − Tc
+ δ )λ − β

(P)

K





1 − Td

1 − Tc





. (E5.6)

Thus expression (E3.31) gives the investment function for this model, while (E3.33) and (E5.6)
give its equations of motion.

(b) The phase diagram for this model is shown in figure E5.1. It differs from figure E4.1 in two
respects: both theλ′ = 0 locus and the stable path are now downward sloping. These changes are
due to the existence of diminishing returns in the earnings function. Theλ′ = 0 locus becomes
hyperbolic because of the 1/K term in equation (E5.6). This reflects the fact that marginal earn-
ings decrease as the capital stock becomes larger.

When theλ′ = 0 locus changes, so does the stable path. To see why, consider where the
model would go from an arbitrary point located horizontally to the left of the steady state. Such a
point is no longer on theλ′ = 0 locus and, in fact, is in a region whereλ′ is negative. This means
that λ will begin decreasing as the system moves to the right. Moreover, an inspection of the
phase diagram shows that the model will continue moving downward forever. Thus, if the system
were to start at a point directly to the left of the steady state,λ would quickly fall below its steady
state value and remain below it forever. A similar analysis applies for points to the right of the
steady state, except that those points lead to perpetually increasing values ofλ . The stable path,
therefore, is no longer horizontal. In fact, it must be downward sloping, and will lie between the
λ′ = 0 locus and a horizontal line through the steady state. Only from points along such a path
could the model eventually reach the steady state. The path will be unique under the conditions
discussed in section (3.3)

(c) An increase in the tax on interest payments shifts theλ′ = 0 locus to the right but leaves the
K ′ = 0 locus unchanged. The steady state, therefore, moves upward and to the right, as shown by
point C in figure E5.2. Since the tax change is permanent and occurs immediately, the model
jumps instantly from the original steady state, point A, to point B on the new stable path. Then,
as time passes, the system moves downward and to the right along the stable path from B to C.
This produces the time paths ofλ , I andK that are shown in figure E5.2.

At first, this result may seem surprising. Why should a tax increase lead to a rise in the cap-
ital stock? The reason can best be understood from equation (E3.5), the arbitrage condition for
the model. When the tax on interest payments rises, the after-tax return on bonds falls. The tax
does not apply to dividends or capital gains, however, so the return on equity is unchanged. Thus,
the initial effect of the policy is to make the after-tax return on equity higher than the return on
bonds. This produces a windfall gain to the holders of equity, which shows up in figure E5.2 as a
jump from A to B. The increase inλ produces a subsequent rise in investment, so the capital
stock begins to grow and the model moves toward the new steady state at C.
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(d) When the tax increase is announced in advance, the system follows the path shown in figure
E5.3. At the moment of the announcement, the model jumps from A to B because of the windfall
benefit to holders of equity. It does not, however, move all the way to the new stable path
because the actual tax change will not occur for some time. From point B the model evolves
according to the original equations of motion (since the tax has not yet changed). It reaches point
C at the exact instant the tax change is implemented. After that, the model moves along the new
stable path toward the steady state at D. The paths of the model’s variables over time are shown at
the bottom of the figure.

E6. The Stock Market and the Costate Variable

Intertemporal investment models, such as the ones discussed in this paper, often generate
equations giving the optimal value of investment as a function of the capital stock, a costate vari-
able (or multiplier), and variables that the firm takes as given. In the model of section (2), for
example, equation (2.34) gives investment as a function ofK , λ and a number of prices:

I =
1

2wθ
(

λ
1 − Td

− Pk ) .  (2.34)

If λ were observable, equation (2.34) and others like it could be estimated econometrically. This
would allow values to be obtained for some of the parameters in the model, such asθ in the
expression above. More importantly, however, it would also allow the statistical performance of
the model to be assessed.

In what has become a very influential paper, Hayashi (1982) presented conditions under
which the marginal value of additional capital (λ , in the notation of this paper) would be exactly
equal to the average value of the capital stock. This finding allowed observable stock market data
to be used to construct the unknown variableλ , which in turn allowed investment equations such
as (2.34) to be estimated. A number of studies along those lines were conducted, a good example
of which is Summers (1981). Because of its empirical importance, the remainder of this exercise
will be devoted to deriving the Hayashi result.

So far in this paper, we have always assumed that dividends were additively separable into
an earnings function, which was independent of investment, and an investment cost function,
which was independent of the capital stock. Now we will relax that assumption and solve the
investment problem under very general conditons. In particular, assume that dividends are a
function of capital, investment, and a vector of short-run variables,P, that the firm takes as given:

D = D(K , I , P) .  (E6.1)

A single restriction will be imposed onD: it must be homogeneous of degree one in capital and
investment. For convenience, assume the interest rate is constant and there are no taxes.
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(a) Write down the firm’s investment problem and derive the first-order conditions that must
hold along the optimal investment path.

(b) Differentiate the following function with respect to future times, whereλ , as usual, is the
current value multiplier associated with the capital accumulation constraint:

F(s) = λ(s)Ke−r (s−t) . (E6.2)

Use the conditions found in part (a) to eliminate the terms inλ , λ′ and K ′. Then, apply Euler’s
theorem to simplify the result.

(c) Integrate the equation from part (b) over the interval [t,∞) and discuss the result.

******** Answer ********

(a) Since there are no taxes, the arbitrage condition used in section (2) applies. This means that
the firm’s value function can be obtained by inserting (E6.1) into (2.9) to give:

V(t) =
∞

t
∫ D(K , I , P)e−r (s−t)ds . (E6.3)

Thus, the firm’s investment problem is to chooseI to maximize (E6.3) subject to the accumula-
tion equation below:

K ′ = I − δ K . (E6.4)

The Hamiltonian for this problem is particularly simple:

H = D(K , I , P)e−r (s−t) + Λ(I − δ K) .  (E6.5)

Taking first-order conditions and converting the multiplier to its current value equivalent pro-
duces the following:

∂D

∂I
+ λ = 0 ,  (E6.6)

∂D

∂K
− δ λ = − λ′ + r λ , (E6.7)
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I − δ K = K ′ . (E6.8)

Equations (E6.6) through (E6.8) must hold along the optimal path of investment.

(b) DifferentiatingF with respect tos is straightforward and produces the following expres-
sion:

dF

ds
= ( λ′K + λ K ′ − r λ K )e−r (s−t) . (E6.9)

Using (E6.7) to eliminateλ′, (E6.6) to eliminateλ , and (E6.8) to eliminateK ′ gives, after collect-
ing terms:

dF

ds
= − 


∂D

∂K
K +

∂D

∂I
I



e−r (s−t) . (E6.10)

Finally, sinceD is homogeneous of degree one, Euler’s theorem states that the following holds:

∂D

∂K
K +

∂D

∂I
I = D(K , I , P) .  (E6.11)

Thus, (E6.10) can be simplified to:

dF

ds
= − D(K , I , P)e−r (s−t) . (E6.12)

(c) SinceF is known, integrating (E6.12) over an interval [a, b] is straightforward and pro-
duces:

λ(b)K(b)e−r (b−t) − λ(a)K(a)e−r (a−t) = −
b

a
∫ D(K , I , P)e−r (s−t)ds . (E6.13)

Choosing the limits of integration to bet and∞, and making use of the usual transversality con-
dition on the behavior ofλ as time tends toward infinity gives:

λ(t)K(t) = −
∞

t
∫ D(K , I , P)e−r (s−t)ds . (E6.14)

The right side of this equation is exactly the same as the right side of equation (E6.3), so the fol-
lowing must be true:
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λ(t)K(t) = V(t) .  (E6.15)

Thus,λ(t) can be calculated using the formula below:

λ(t) =
V(t)

K(t)
. (E6.16)

Equation (E6.16) shows that under the assumptions made above, the marginal value of an
additional unit of capital,λ , is exactly equal to the average value of a unit of capital,V/K . Thus,
λ can be calculated by simply dividing the firm’s stock market value by its capital stock. Assum-
ing that the capital stock can be observed or computed, (E6.16) provides a way of obtaining the
multiplier, λ . However, this approach depends heavily on the assumption that the dividend func-
tion is homogeneous of degree one in capital and investment. If it is not, the average and
marginal values of the capital stock will differ.

E7. Constructing Finite Difference Formulae

Difference formulae accurate to high orders can be constructed by using combinations of
Taylor series expansions at several adjacent points. For example, a first-order difference accurate

to O(h2) can be constructed by subtracting the expansion forf (t − h) from that for f (t + h). This
is known as a "central" difference. Using more expansions, it is possible to construct formulae
accurate to even higher orders.

It is also possible to construct difference approximations to higher-order derivatives. This is
done by applying the method used for first-order differences recursively. For example, an
approximation for a second-order derivative could be constructed as follows. First, difference
formula for f ′′ in terms of f ′ would be built. Then, inserting an appropriate difference formulae
for f ′ would produce the desired difference formula.

Finally, difference formulae can also be constructed for unevenly spaced grids in which
adjacent points are separated by varying distances. This is done in exactly the same manner as
for uniform grids, but with the appropriate distances inserted whereverh appears. As discussed
in the text, uneven grid spacing can be a very powerful tool for reducing truncation error. How-
ever, it does introduce an additional source of truncation error at points where there are sharp
changes in grid spacing. This point will be discussed in detail in part (c).

(a) Construct a first-order central difference formula. How does its accuracy compare with the
forward difference presented in the text?

(b) Using the results of part (a), construct a second-order central difference formula. What is
its order of accuracy?
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(c) Construct the analog of a first-order centered difference for an unevenly spaced grid. Dis-
cuss its order of accuracy.

******** Answer ********

(a) As suggested at the beginning of the exercise, a first-order central difference is constructed
from Taylor series expansions around timet for times t + h and t − h. To fourth order, these
expansions are the following

f (t + h) = f (t) + hf ′(t) +
h2 f ′′(t)

2!
+

h3 f ′′′(t)
3!

+ O(h4) ,  (E7.1)

f (t − h) = f (t) − hf ′(t) +
h2 f ′′(t)

2!
−

h3 f ′′′(t)
3!

+ O(h4) .  (E7.2)

Subtracting produces:

f (t + h) − f (t − h) =

( f (t) + hf ′(t) +
h2 f ′′(t)

2!
+

h3 f ′′′(t)
3!

+ O(h4) ) −

( f (t) − hf ′(t) +
h2 f ′′(t)

2!
−

h3 f ′′′(t)
3!

+ O(h4) ) .  (E7.3)

Notice that the even-order terms all cancel out. Rearranging (E7.3) and dividing through by 2h
produces the central difference formula below:

f ′(t) =
f (t + h) − f (t − h)

2h
+ O(h2) .  (E7.4)

This expression is accurate toO(h2), an order more accurate than the simple forward and back-
ward differences presented in the text.

(b) To construct a second-order central difference, start by expandingf ′(t + a) and f ′(t − a)
around f (t):

f ′(t + a) = f ′(t) + af ′′(t) +
a2 f ′′′(t)

2!
+

a3 f ′′′′(t)
3!

+ O(a4) ,  (E7.5)
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f ′(t − a) = f ′(t) − af ′′(t) +
a2 f ′′′(t)

2!
−

a3 f ′′′′(t)
3!

+ O(a4) .  (E7.6)

Subtracting these, dividing through by 2a, and rearranging produces an expression analogous to
(E7.4):

f ′′(t) =
f ′(t + a) − f ′(t − a)

2a
+ O(a2) .  (E7.7)

Substituting (E7.4) for the derivatives produces:

f ′′(t) =
1

2a
(

f (t + 2a) − f (t)

2a
−

f (t) − f (t − 2a)

2a
) + O(a2) .  (E7.8)

Since all of the terms att + a andt − a have cancelled out, we can define a new step size,h, with
the property thath = 2a. This allows (E7.8) to be rewritten as:

f ′′(t) =
f (t + h) − 2 f (t) + f (t − h)

h2
+ O(h2/4) . (E7.9)

For the purposes of error analysis, the factor of 1/4 in the error term is ignored, so (E7.9) is accu-

rate toO(h2).

(c) A first-order central difference for a non-uniform grid is constructed almost exactly as
shown in part (a), except that care must be taken about the spacing of the points. The first step is
to construct Taylor series expansions aroundt for t + a and t − b. To fourth order, these expan-
sions are the following:

f (t + a) = f (t) + af ′(t) +
a2 f ′′(t)

2!
+

a3 f ′′′(t)
3!

+ O(a4) ,  (E7.10)

f (t − b) = f (t) − bf ′(t) +
b2 f ′′(t)

2!
−

b3 f ′′′(t)
3!

+ O(b4) .  (E7.11)

Subtracting these produces:
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f (t + a) − f (t − b) =

( f (t) + af ′(t) +
a2 f ′′(t)

2!
+

a3 f ′′′(t)
3!

+ O(a4) ) −

( f (t) − bf ′(t) +
b2 f ′′(t)

2!
−

b3 f ′′′(t)
3!

+ O(b4) ) .  (E7.12)

In this case, the even-order terms do not cancel out. Rearranging (E7.12) and dividing through by
a + b produces the following:

f (t + a) − f (t − b)

a + b
= f ′(t) +

1

2!
(a − b) f ′′(t) +

1

3!





a3 + b3

a + b



f ′′′(t) + . . . . (E7.13)

This suggests using the difference formula below:

f ′(t) ≈
f (t + a) − f (t − b)

a + b
, (E7.14)

which will have an error term given by the following:

1

2!
(a − b) f ′′(t) +

1

3!





a3 + b3

a + b



f ′′′(t) + . . . . (E7.15)

Whena andb are close in magnitude, the even-order terms in (E7.15) will be negligible. In

that case, the error will be essentiallyO(a2) (or O(b2) for that matter, sincea ≈ b), which is the
same as for a uniform grid. On an uneven grid, in regions where the spacing between points
changes suddenly,a and b may differ substantially. When that occurs, the first term in (E7.15)
will be significant, so the error will be more likeO(a). This effect can be minimized by avoiding
sharp jumps in grid spacing, and by locating any such changes in the regions wheref ′′(t) is
small. By constructing more elaborate difference formulae, the term in (a − b) can be eliminated
entirely. For more discussion of difference formulae refer to Fox (1962).

E8. Solving the Dividend Tax Analytically

For most experiments with most models, it is difficult or impossible to obtain an analytic
solution to the model’s equations of motion. The eigenvector transformation described in section
(3.3) can be used when the model’s coefficients are constant, such as near the steady state, but no
general method exists for solving problems with time-varying coefficients. However, it is some-
times possible to obtain analytic solutions to particular models for particular experiments. The
investment models in this paper, for example, can be solved analytically for the case of an
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announced increase in the dividend tax.

Consider sector A’s investment problem from section (6) of the text. Its equations of motion
were the following:

λ′a = (r + δ )λ a − β (1 − Td) ,  (6.11)

K ′a = I a − δ Ka , (6.12)

and investment was given by:

I a =
1

2Wθ a
(

λ a

(1 − Td)(1 − Ts)
− P3 ) .  (6.14)

Ordinarily, a model’s equations of motion are mutually interdependent and must be solved simul-
taneously. In the problem above, however, the capital stock does not appear in equation (6.11).
As a result, (6.11) can be integrated in isolation to obtain a function givingλ a(t) in terms of
exogenous variables. This function can then be inserted into (6.14) to obtain investment. Invest-
ment, in turn, can be used in (6.12) to find the capital stock. Thus, for this model subjected to a
dividend tax shock, it is possible to find an analytic solution.

(a) Assuming thatβ andW are constant, use a suitable integrating factor to solve (6.11) for a
closed-form expression forλ a(t) in terms of the other variables.

(b) Now suppose the government announces that the dividend tax will rise fromTd
1 to Td

2 at
dateτ in the future. Using this information, evaluate the integral obtained in part (a). It will help
to recall the following property of integrals:

b

a
∫ f (x)dx =

τ

a
∫ f (x)dx +

b

τ
∫ f (x)dx . (E8.1)

(c) Insert the results of part (b) into (6.14) to obtain an expression for investment in terms of
the exogenous variables. Also, derive a function∆I a(t) giving the change in investment at each
point in time from its value before the policy change was announced. Assume that the model was
initially at the steady state.

(d) Using a second integrating factor, solve (6.12) for the capital stock as a function ofI a and
the exogenous variables.

(e) Combine the results of parts (c) and (d) to obtain an expression forKa(t) whent ≤ τ .
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******** Answer ********

(a) By collecting terms inλ a on the left side, equation (6.11) can be rearranged as shown
below:

λ′a − (r + δ )λ a = − β (1 − Td) .  (E8.2)

This suggests the integrating factor below:

e−(r+δ )s . (E8.3)

Multiplying both sides of (E8.2) by (E8.3) gives:

( λ′a − (r + δ )λ a )e−(r+δ )s = − β (1 − Td)e−(r+δ )s . (E8.4)

If both sides of (E8.4) are multiplied bydt, the left side becomes an exact differential, so the
entire equation can be rewritten as shown:

d

dt


λ ae−(r+δ )s


= − β (1 − Td)e−(r+δ )s . (E8.5)

Integrating both sides fromt to ∞ and assuming thatλ a grows more slowly thanr + δ as time
tends to infinity, produces the following:

λ a(t) =
∞

t
∫ β (1 − Td)e−(r+δ )(s−t)ds . (E8.6)

Equation (E8.6) is the desired closed-form solution forλ a(t).

(b) To evaluate (E8.6) for an announced dividend tax change occuring at timeτ , start by split-
ting the integral into two parts:

λ a(t) =
τ

t
∫ β (1 − Td)e−(r+δ )(s−t)ds +

∞

τ
∫ β (1 − Td)e−(r+δ )(s−t)ds . (E8.7)

This expression is valid whent ≤ τ (the case oft > τ will be covered below). In each integral,β
andTd are constant, althoughTd differs between the two integrals, so (E8.7) can be rewritten as
shown below:
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λ a(t) = β (1 − Td
1 )

τ

t
∫ e−(r+δ )(s−t)ds + β (1 − Td

2 )
∞

τ
∫ e−(r+δ )(s−t)ds , (E8.8)

where the two values ofTd have now been inserted. Evaluating (E8.8) is straightforward and
produces the following expression:

λ a(t) =
β (1 − Td

1 )(1 − e−(r+δ )(τ −t))

r + δ
+

β (1 − Td
2 )e−(r+δ )(τ −t)

r + δ
. (E8.9)

Finally, (E8.9) can be simplified to give:

λ a(t) =
β (1 − Td

1 )

r + δ




1 +

Td
1 − Td

2

1 − Td
1

e−(r+δ )(τ −t)




. (E8.10)

This givesλ a(t) whent ≤ τ .

Obtaining the value ofλ a(t) whent > τ is somewhat easier because (E8.6) can be integrated
directly. Thus, fort > τ the following must hold:

λ a(t) =
β (1 − Td

2 )

r + δ
. (E8.11)

Together, equations (E8.10) and (E8.11) give the value ofλ a for any point in time.

(c) Finding an expression for investment is a straightforward matter of inserting (E8.10) and
(E8.11) into (6.14). Whent ≤ τ , this produces:

I a =
1

2Wθ a






β
(r + δ )(1 − Ts)




1 +

Td
1 − Td

2

1 − Td
1

e−(r+δ )(τ −t)




− P3






. (E8.12)

In contrast, whent > τ investment is given by:

I a =
1

2Wθ a
(

β
(r + δ )(1 − Ts)

− P3 ) .  (E8.13)

Notice that (E8.13) does not depend on the dividend tax, and is precisely the same as the expres-
sion giving investment before the tax change was announced. This is true because the dividend
tax falls purely on profits, so once it has been implemented firms return to their original invest-
ment behavior. Thus, the difference between investment after implementation of the tax and
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investment before the tax change was announced is zero.

In the period between the announcement of the change and its implementation, investment
does differ from its pre-announcement value. A function giving this difference is:

∆I a(t) = I a(t) − I ss
a , (E8.14)

where the pre-announcement (and post-implementation) value of investment has been written as
I ss
a . As noted above,I ss

a is given by (E8.13), so comparing (E8.12) and (E8.13) shows that the
following must be true:

∆I a(t) =
1

2Wθ a




β
(r + δ )(1 − Ts)








Td
1 − Td

2

1 − Td
1

e−(r+δ )(τ −t)




. (E8.15)

(d) Solving (6.12) requires the same sequence of steps used to solve (6.11) in part (a). First,
rearrange the equation as shown:

K ′a + δ Ka = I a . (E8.16)

Now, introduce the integrating factor below:

eδ s , (E8.17)

and multiply both sides of (E8.16) by (E8.17). As before, this converts the left side into an exact
differential, so the equation can be written:

d

dt


Kaeδ s


= I a . (E8.18)

Integrating (E8.18) from 0 tot (sinceK(0) is known) and rearranging gives the following:

Ka(t) = K(0)e−δ t +
t

0
∫ I aeδ (s−t)ds . (E8.19)

(e) The remaining step is to eliminateI a from (E8.19) using the results of part (c). Start by
noting that from the definition of∆I a in (E8.14), the following is true:

I a(t) = I ss + ∆I a(t) .  (E8.20)
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Inserting (E8.20) into (E8.19) produces:

Ka(t) = K(0)e−δ t +
t

0
∫ I ss

a eδ (s−t)ds +
t

0
∫ ∆I aeδ (s−t)ds . (E8.21)

If the model was initially at the steady state, the sum of the first two terms on the right gives
the original steady state capital stock. To see this, notice that the second term on the right is the
net amount of capital constructed by investing at rateI ss

a over the period [0,t]. The first term on
the right is the amount of capital left after depreciation over [0,t], so the sum of the first two
terms is the amount of capital that would exist at timet given an initial stockK(0) and a rate of
investmentI ss

a . Since the model was initially at the steady state,I ss
a is exactly the investment

needed to perpetuate the original capital stock, so the first two terms must add toK(0). Thus,
(E8.21) can be rewritten as shown:

Ka(t) = K(0) +
t

0
∫ ∆I aeδ (s−t)ds . (E8.22)

Inserting∆I a from expression (E8.15) gives:

Ka(t) = K(0) +
t

0
∫

β (Td
1 − Td

2 )e−(r+δ )(τ −s) eδ (s−t)

2Wθ a(r + δ )(1 − Ts)(1 − Td
1 )

ds . (E8.23)

Finally, evaluating the integral in (E8.23) gives the following expression forKa(t):

Ka(t) = K(0) +
β (Td

1 − Td
2 )(e−(r+δ )(τ −t) − e−(r+δ )τ −δ t)

2Wθ a(r + δ )(1 − Ts)(1 − Td
1 )(r + 2δ )

. (E8.24)

Equation (E8.24) can be used to find the capital stock in year 10 for the dividend tax experi-
ment discussed in section (9). Inserting the parameters given in appendix A1 shows that an

announced increase inTd from 10 percent to 20 percent to occur in year 10 causesK(10) to fall
from 1 to 0.9113, the value mentioned in the text.
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A1. The Trial Data Set

The data set used in section (9) is shown in the tables below. Since the base case was a
steady state, these values were used for each grid point.

Table A1: Variables in the Trial Data Set

Symbol Definition Value

Ka Capital stock A, specific to industry A 1.0
β Short run profit on a unit ofKa 0.25
λ a Marginal value ofKa 1.5
Kb Capital stock B, nonspecific 10.0
ρ Rental price of a unit ofKb 0.25

λ b Marginal value ofKb 1.5

K1
b Type B capital used by industry 1 3.177778

K2
b Type B capital used by industry 2 4.622222

K3
b Type B capital used by industry 3 2.2

W Wage rate 1.0
L Total labor supply 5.0

LP
a Labor used in production by industry A 0.25

LI
a Labor used in investment by industry A 0.042593

LI
b Labor used in investment by industry B 0.425926

L1 Labor used by industry 1 0.264815
L2 Labor used by industry 2 3.466667
L3 Labor used by industry 3 0.55
Pa Price of good A 1.0
P1 Price of good 1 1.0
P2 Price of good 2 1.0
P3 Price of raw capital goods 1.0
Xa Production of good A 0.5
X1 Production of good 1 1.059259
X2 Production of good 2 4.622222
X3 Production of raw capital goods 1.1
I a Investment by industry A 0.1
I b Investment by industry B 1.0
Da Dividends paid by industry A 0.121667
Db Dividends paid by industry B 1.216667
C Private consumption 5.404500
G Government spending 0.776981
Tw Tax on wages 0.2
Ta

s Sales tax on good A 0.0

T1
s Sales tax on good 1 0.0

continued ...
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Table A1: Variables in the Trial Data Set, continued

Symbol Definition Value

T2
s Sales tax on good 2 0.0

T3
s Sales tax on good 3 0.0

LS Lump sum payment 0.2

Td Dividend tax 0.10
Ts Investment subsidy 0.10
γ1 Technical change parameter, industry 1 0.620403
γ2 Technical change parameter, industry 2 1.240806
γ3 Technical change parameter, industry 3 1.0
ρ x Exogenous expectation, rental price 0.25
Wx Exogenous expectation, wage rate 1.0
Px

3 Exogenous expectation, raw capital price 1.0
Px

a Exogenous expectation, price of good A 1.0

Tdx Exogenous expectation, dividend tax rate 0.10
Tsx Exogenous expectation, investment subsidy 0.10
ρe Actual expectation, rental price 0.25
We Actual expectation, wage rate 1.0
Pe

3 Actual expectation, raw capital price 1.0
Pe

a Actual expectation, price of good A 1.0

Tde Actual expectation, dividend tax rate 0.10
Tse Actual expectation, investment subsidy 0.10
r Interest rate 0.05
ζ Price deflator 1.0

Table A2: Parameters in the Trial Data Set

Symbol Definition Value

δ Depreciation rate 0.10
θ a Investment parameter, industry A 4.259259
θ b Investment parameter, industry B 0.425926
ε a Labor exponent, industry A 0.5
ε1 Labor exponent, industry 1 0.25
ε2 Labor exponent, industry 2 0.75
ε3 Labor exponent, industry 3 0.5
α a

C Share of private consumption, good A 0.080887

α 1
C Share of private consumption, good 1 0.171360

α 2
C Share of private consumption, good 2 0.747753

α a
G Share of government spending, good A 0.080887

α 1
G Share of government spending, good 1 0.171360

α 2
G Share of government spending, good 2 0.747753
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A2. The Model’s Equations

The appendix lists the equations of the intertemporal general equilibrium model discussed
in section (9) in the form used to implement the model on a computer. For the most part, the
equations appear exactly as they did in the text. However, three changes have been made: deriva-
tives have been replaced by finite difference approximations, expected variables have been used
in the investment submodels, and several variables have been eliminated by algebraic substitu-
tion. Where possible, the equations have been numbered as they were in the text.

A2.1. Dynamic Equations

The model contains four true dynamic equations which link different points in time; two are
sector A’s equations of motion, and two are sector B’s. Together these equations govern the evo-
lution of four variables:λ a, λ b, Ka andKb. Since each equation of motion holds over each grid
interval, if there areN intervals there will be 4N dynamic equations in all.

Equations of motion for industry A:

λ a(t + h) − λ a(t)

h
= (r + δ )λ a − β (1 − Tde) ,  (6.15)

Ka(t + h) − Ka(t)

h
= I a − δ Ka . (6.16)

Equations of motion for industry B:

λ b(t + h) − λ b(t)

h
= (r + δ )λ b − ρe(1 − Tde) ,  (6.24)

Kb(t + h) − Kb(t)

h
= I b − δ Kb . (6.25)

A2.2. Boundary Conditions

The model has four boundary conditions: the two initial capital stocks,Ka(0) andKb(0),
and the two steady state multipliers,λ ss

a andλ ss
b . The capital stocks can be obtained from observ-

able data, but the multipliers must be calculated using the equations below:

λ ss
a =

β (1 − Tde)

r + δ
, (6.17)
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λ ss
b =

ρe(1 − Tde)

r + δ
. (6.26)

A2.3. Intraperiod Equations

Each period’s submodel consists of the 27 equations listed below. From Walras Law, how-
ever, we know that one of these is redundant, so we will drop equation (7.25) to leave 26 indepen-
dent equations. Since these hold at each grid point, a grid ofN intervals will have 26(N + 1)
intraperiod equations.

Short run profit on a unit ofKa:

β = (
1 − ε a

ε a
)


ε aPe
a

We



1/(1−ε a)

We . (6.13)

Investment by sector A:

I a =
1

2Weθ a




λ a

(1 − Tde)(1 − Tse)
− Pe

3



. (6.14)

Output of sector A:

Xa = (LP
a )ε a(Ka)1−ε a . (7.1)

Labor demanded for production in sector A:

LP
a = 


ε aPa

W



1/(1−ε a)

Ka . (7.2)

Labor demanded for investment by sector A:

LI
a = θ a I 2

a . (7.4)

Pretax dividends of sector A:

Da = Pa Xa − WLP
a − 


P3 I a + WLI

a


(1 − Ts) .  (7.5)
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Investment by sector B:

I b =
1

2Weθ b




λ b

(1 − Tde)(1 − Tse)
− Pe

3



. (6.23)

Labor demanded by sector B:

LI
b = θ b I 2

b . (7.7)

Pretax dividends of sector B:

Db = ρ Kb − (P3 I b + WLI
b)(1 − Ts) .  (7.8)

Labor demanded by sector i,i ∈{1, 2, 3}:

Li =
1

γ i
Xi




ρε i

W(1 − ε i )



1−ε i

. (7.10)

Capital B demanded by sector i,i ∈{1, 2, 3}:

Ki
b =

1

γ i
Xi



W(1 − ε i )

ρε i




ε i

. (7.11)

Zero-profit condition for sector i,i ∈{1, 2}:

Xi Pi = WLi + ρ Ki
b . (7.12)

Zero-profit condition for sector 3:

X3P3 = (1 + T3
s)(WL3 + ρ K3

b) .  (7.13)

Labor market equilibrium condition:

L = LP
a + LI

a + LI
b + L1 + L2 + L3 . (7.26)

Capital B market equilibrium condition:

Kb = K1
b + K2

b + K3
b . (7.27)
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Consumption:

C = WL(1 − Tw) + (Da + Db)(1 − Td) + LS . (7.14)

Government spending:

G = Td(Da + Db) − Ts(P3(I a + I b) + W(θ a I 2
a + θ b I 2

b))

+ Ta
s Pa Xa + T1

s P1X1 + T2
s X2P2 + T3

s P3X3

+ TwWL − LS . (7.18)

Market equilibrium for good i,i ∈{A, 1, 2}:

Pi Xi (1 + Ti
s) = α i

CC + α i
GG . (7.22-7.24)

Market equilibrium for good 3:

X3 = I a + I b . (7.25)

Price deflator:

ζ =
XaPa(1 + Ta

s ) + X1P1(1 + T1
s) + X2P2(1 + T2

s)

Xa[Pa(1 + Ta
s )]b + X1[P1(1 + T1

s)]b + X2[P2(1 + T2
s)]b

. (7.28)

A2.4. Expectations

Next, there are 6 equations which determine investors’ expectations. These hold at each
grid point, so on a grid ofN intervals, there will be 6(N + 1) expectations equations in all. The
equations are as follows:

We = (W)λ n(Wx)1−λ n , (8.1)

ρe = (ρ)λ n(ρ x)1−λ n ,

Pe
a = (Pa)λ n(Px

a)1−λ n ,

Pe
3 = (P3)λ n(Px

3)1−λ n ,

Tde = (Td)λ x(Tdx)1−λ x ,
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Tse = (Ts)λ x(Tsx)1−λ x .

Finally, we can verify that the model is correctly identified by counting its equations and
variables. From the table A1 in appendix (A1) it can be seen that the complete model has 56 vari-
ables at each grid point, or 56(N + 1) in all. Adding up the number of dynamic, intraperiod and
expectations equations gives a total of 36N + 34. Subtracting this from 56(N + 1) gives
20(N + 1) + 2, the number of variables which must be set exogenously. This is exactly the num-
ber of exogenous variables shown in table 9.1, so we conclude that the model is correctly identi-
fied.


	Table of Contents
	Preface
	1 Introduction
	2 A Simple Intertemporal Model of Investment
	3 Graphical Analysis
	3.1 The Steady State
	3.2 Constructing a Phase Diagram
	3.3 Saddle Path Stability and Uniqueness
	3.4 Analyzing an Experiment

	4 Numerical Methods
	4.1 Shooting
	4.2 Multiple Shooting
	4.3 The Fair-Taylor Method
	4.4 Finite Differences

	5 An Intertemporal General Equilibrium Model
	6 The Investment Submodel
	6.1 Investment by Sector A in Firm-Specific Capital
	6.2 Investment by Sector B in General Purpose Capital

	7 The Short Run General Equilibrium Model
	7.1 Investment Sectors
	7.2 Other Production
	7.3 The Consumer
	7.5 Market Clearing
	7.4 The Government
	7.6 Other Equations

	8 Expectations
	9 Implementing the Model
	9.1 The Solution Algorithm
	9.2 The Data Set
	9.3 Partitioning
	9.4 Testing the Complete Model

	10 Some Illustrative Simulations
	10.1 The Importance of Foresight
	10.2 Indirect Dynamic Effects

	11 Goals, Reading Guide and References
	References
	Exercises
	E1. The Effects of a Price Shock
	E2. The Effects of a Rise in the Price of Capital Goods
	E3. Adding More Taxes to the Investment Model
	E4. The Effects of a Capital Gains Tax
	E5. Diminishing Returns
	E6. The Stock Market and the Costate Variable
	E7. Constructing Finite Difference Formulae
	E8. Solving the Dividend Tax Analytically

	Appendices
	A1. The Trial Data Set
	A2. The Model’s Equations
	A2.1. Dynamic Equations
	A2.2. Boundary Conditions
	A2.3. Intraperiod Equations
	A2.4. Expectations



