Exam 3, Fall 2005

Notes on Solution
Question 1

r:	5%
Benefits of Olympics	
Year 12 games	1,000 million
Tourism, $13+$	25 million
Tourism, 12	500 million
Total at 12	1,500 million
Total today	835

Alternative Bids

Bid	Cost	Net PV	Prob of Win	EV
A	300	535	50%	267.6
B	600	235	90%	211.7

Option A has the higher expected value, so it would be the better proposal. It's not as likely to win, but the net payoff is much higher if it does win. Note that since the city doesn't have to pay unless its proposal is chosen, the EV is equal to $\rho^{*}(835-\operatorname{cost})+(1-\rho)^{*} 0$, where ρ is the probability of winning.

Question 2

$$
Q=K^{\wedge}(0.5)^{*} L^{\wedge}(0.5)
$$

Pk	
PI	24

K	L	Q	TC	AC
24	13.50	18	1305.00	72.50
25	12.96	18	1299.84	72.21
26	12.46	18	1296.92	72.05
27	12.00	18	1296.00	72.00
28	11.57	18	1296.86	72.05
29	11.17	18	1299.31	72.18
30	10.80	18	1303.20	72.40
31	10.45	18	1308.39	72.69
32	10.13	18	1314.75	73.04
33	9.82	18	1322.18	73.45
34	9.53	18	1330.59	73.92
		10 0 $<$ \vdots 1 10 0 0 3 11 0		$\begin{aligned} & \text { O} \\ & \hline \\ & \hline \end{aligned}$

The firm should use 27 units of capital and 12 units of labor. Its average cost will be $\$ 72$ per unit of output.

Question 3

$T C=F+G^{*} Q$
$P=A-B^{*} Q$

| F |
| :---: | ---: |

Subsidy	14000
	1100
	20

Q	P	TC	TR	AC	AR	AR-AC
46	180	17800	22280	386.96	484.347826	97.39
47	160	18100	21520	385.11	457.87234	72.77
48	140	18400	20720	383.33	431.666667	48.33
49	120	18700	19880	381.63	405.714286	24.08
50	100	19000	19000	380.00	380	0.00
51	80	19300	18080	378.43	354.509804	-23.92
52	60	19600	17120	376.92	329.230769	-47.69
53	40	19900	16120	375.47	304.150943	-71.32
54	20	20200	15080	374.07	279.259259	-94.81
55	0	20500	14000	372.73	254.545455	-118.18
56	-20	20800	12880	371.43	230	-141.43
		0 0 + 1 1 0		$\begin{aligned} & \text { O} \\ & \substack{0 \\ \ddots \\ \text { II } \\ 0 \\ \hline} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \text { "11 } \\ & \text { 足 } \end{aligned}$	$\begin{aligned} & \underset{\substack{4 \\ \underset{\alpha}{x}}}{ } \end{aligned}$

The organization should charge $\$ 100$ and house 50 people. Including the subsidy, its revenue will just cover its costs and it will earn zero profit.

Question 4

Part (a)
$P=A-B^{*} Q$

MC: $\quad 25$

$\begin{gathered} \mathrm{Q} \\ \text { (million) } \end{gathered}$	P	$\begin{gathered} \text { TR } \\ \text { (million) } \end{gathered}$	TC (million)	$\begin{gathered} \text { Profit } \\ \text { (million) } \end{gathered}$	MR	MC
5	100	500	125	375		25
6	95	570	150	420	70	25
7	90	630	175	455	60	25
8	85	680	200	480	50	25
9	80	720	225	495	40	25
10	75	750	250	500	30	25
11	70	770	275	495	20	25
12	65	780	300	480	10	25
13	60	780	325	455	0	25
14	55	770	350	420	-10	25
15	50	750	375	375	-20	25
			$$			$\begin{aligned} & \stackrel{\sim}{N} \\ & N \\ & 0 \\ & \end{aligned}$

The firm should charge $\$ 75$ for the device and produce 10 million units. Its profit will be $\$ 500$ million.

Part (b)
First task is to compute the PV of the 20 year stream of monopoly profits:
Annual profit
PV forever
Payments after 20
Value through 20
Next task is compute the CS during the patent period (years 1-20):

CS during patent:
CS if forever
CS after 20
Net CS during patent

250
5,000
1,884
3,116

$$
\begin{aligned}
& =(1 / 2)^{*} 10^{*}(125-75) \\
& =250 / r \\
& =5000 /(1+r)^{\wedge} 20 \\
& =5000-1884
\end{aligned}
$$

After the patent period, competition in the market will drive the price down to $\$ 25$. We can find Q via the demand curve: $25=125-5 Q$ so $Q=20$ million.

Q
CS after patent
CS if forever
Post-patent CS

$$
\begin{array}{r}
20 \\
1,000 \\
20,000 \\
7,538
\end{array}
$$

$$
\begin{aligned}
& =(125-25) / 5 \\
& =(1 / 2)^{*}(125-25)^{*} 20 \\
& =1000 / \mathrm{r} \\
& =20000 /(1+r)^{\wedge} 20
\end{aligned}
$$

Final step is to add the CS values together. The total CS is the PV of the CS during the patent period plus the PV of the CS after the patent expires:

$$
\text { Total CS: } \quad 10,653 \quad=3116+7538
$$

Part (c)

A risk-neutral firm would not proceed with the project because the EV is negative. On average, the firm would expect to lose $\$ 377 \mathrm{M}$ in present value terms.

Part (d)
The subsidy increases both payoffs by $\$ 500$ million (since it reduces the firm's cost of the project to $\$ 500$ million). Hence the firm's problem becomes the following:

Subsidy 500

Outcome	Prob	Payoff	Prob*Payoff
Trial Succeeds	10%	5,731	573
Trial Fails	90%	-500	-450
Expected Profit:			
		123	

The EV is now positive, so the firm will undertake the project.
From the government's point of view, the subsidy reduces the SS generated by the policy by $1.2^{*} 500=\$ 600$ million:

Outcome	Prob	PS Payoff	CS Payoff	Subsidy	Tot SS	Prob*SS		
Trial Succeeds	10%	5,731	10,653	-600	15,784	1,578		
Trial Fails	90%	-500	0	-600	$-1,100$	-990		
Expected SS:								588

Since the EV of the project (including the full CV cost of the revenue needed to underwrite it) is positive, a risk-neutral government would proceed with the subsidy.

