Peter J. Wilcoxen
PPA 723, Managerial Economics

Department of Public Administration The Maxwell School, Syracuse University

Solution to Exam 1

Spring 2007
Here are notes on the solution. Some of the graphs may be omitted and the explanations are a bit terse. If you have any questions, please don't hesitate to stop by during office hours or the lab session to talk over things in detail.

Part 1

1(a) Finding the new equilibria

The initial and target equilibria in each market are shown below (G on the left):

The first step is to calculate the subsidy needed in market G. Using the demand elasticity to find the price change needed to increase Q to the target level:

$$
\begin{aligned}
& \eta=\% \Delta Q / \% \Delta P \\
& \% \Delta P=\% \Delta Q / \eta \\
& \% \Delta P=((240-200) / 200) /(-2) \\
& \% \Delta P=(20 \%) /(-2) \\
& \% \Delta P=-10 \% \\
& \Delta P=-0.1 * \$ 10=-\$ 1 \\
& P \text { with subsidy }=\$ 10-\$ 1=\$ 9
\end{aligned}
$$

The subsidy per unit of good G must be $\$ 1$ and the price must be $\$ 9$. The cost of the subsidy will be $\$ 1 * 240=\$ 240$.

The next step is to calculate the effect of the tax on Qb. Using the elasticity:

$$
\begin{aligned}
& \eta=\% \Delta \mathrm{Q} / \% \Delta \mathrm{P} \\
& \% \Delta \mathrm{Qb}=\eta * \% \Delta \mathrm{~Pb} \\
& \% \Delta \mathrm{Qb}=(-1) *((12-10) / 10)=-1 * 20 \%=-20 \% \\
& \Delta \mathrm{Qb}=-0.2 * 150=-30 \\
& \mathrm{Qb} 2=150-30=120
\end{aligned}
$$

Revenue from the tax will be $\$ 2 * 120=\$ 240$. Since the expenditure on the subsidy exactly matches the revenue raised by the tax, the cross-subsidy will work without creating a budget surplus or deficit.

1(b) Changes in surplus

The change in CS in each market can be calculated as follows:

$$
\begin{aligned}
& \Delta \mathrm{CSg}=\$ 1 * 200+0.5 * \$ 1 * 40=\$ 220 \\
& \Delta \mathrm{CSb}=-(\$ 2 * 120+0.5 * \$ 2 * 30)=-\$ 270
\end{aligned}
$$

Deadweight loss is just the sum (difference between lost CS in market B and gained CS in market A):

$$
\text { DWL }=\$ 220-\$ 270=-\$ 50
$$

Checking by calculating the DWL triangles in the two markets separately:

$$
\begin{aligned}
& \text { DWLg }=0.5 * \$ 1 * 40=\$ 20 \\
& \text { DWLb }=0.5 * \$ 2 * 30=\$ 30 \\
& \text { DWL }=\text { DWLg }+ \text { DWLb }
\end{aligned}
$$

Part 2

2(a) Market equilibrium

The first step is to rearrange each W2P equation to find the quantity demanded by a given individual of each type:

$$
\begin{aligned}
& \mathrm{W} 2 \mathrm{~Pa}=500-\mathrm{Qa} \\
& \mathrm{~W} 2 \mathrm{~Pa}=\mathrm{P}=500-\mathrm{Qa} \\
& \mathrm{Qa}=500-\mathrm{P} \\
& \mathrm{~W} 2 \mathrm{~Pb}=500-5^{*} \mathrm{Qb} \\
& \mathrm{~W} 2 \mathrm{~Pb}=\mathrm{P}=500-5^{*} \mathrm{Qb} \\
& \mathrm{Qb}=(500-\mathrm{P}) / 5
\end{aligned}
$$

The market demand is the sum of the individual demands. Since there are 10 type-A buyers and 20 type-B buyers, the total Qd demanded will be:

$$
\begin{aligned}
& \mathrm{Qd}=10 * \mathrm{Qa}+20 * \mathrm{Qb} \\
& \mathrm{Qd}=10 *(500-\mathrm{P})+20 *(500-\mathrm{P}) / 5 \\
& \mathrm{Qd}=5000-10 * \mathrm{P}+2000-4 * \mathrm{P} \\
& \mathrm{Qd}=7000-14 * \mathrm{P}
\end{aligned}
$$

The supply curve is:

$$
\begin{aligned}
& \mathrm{W} 2 \mathrm{~A}=\mathrm{P}=\mathrm{Qs} / 6 \\
& \mathrm{Qs}=6 * \mathrm{P}
\end{aligned}
$$

Finding the equilibrium:
$\mathrm{Qd}=\mathrm{Qs}$
$7000-14 * P=6 * P$
$7000=20 * P$
$\mathrm{P}=350$
$\mathrm{Qd}=7000-14^{*} 350=7000-4900=2100$
Checking: Qs $=6 * 350=2100$

The question does not ask for the individual Q's but they are straightforward to calculate and are a useful check:

$$
\begin{aligned}
& \mathrm{Qa}=500-350=150 \\
& \mathrm{Qb}=(500-350) / 5=30 \\
& \mathrm{Qd}=10 * 150+20 * 30=1500+600=2100
\end{aligned}
$$

2(b) Effect of a $\$ 200$ tax
With the tax, the seller will only supply the good when the buyers pay $\mathrm{P}=\mathrm{W} 2 \mathrm{~A}+\$ 200$. Using that to find the supply curve with the tax:

$$
\begin{aligned}
& \mathrm{P}=\mathrm{W} 2 \mathrm{~A}+\$ 200 \\
& \mathrm{P}=\mathrm{Qs} / 6+\$ 200 \\
& \mathrm{Qs}=6 * \mathrm{P}-\$ 1200
\end{aligned}
$$

Finding the equilibrium:

$$
\begin{aligned}
& \mathrm{Qd}=\mathrm{Qs} \\
& 7000-14 * \mathrm{P}=6 * \mathrm{P}-1200 \\
& 8200=20 * \mathrm{P} \\
& \mathrm{P}=\$ 410 \\
& \mathrm{Qd}=7000-14 * 410=1260
\end{aligned}
$$

Check: Qs $=6 * 410-\$ 1200=1260$

Part 3

Policy 1 would raise the price of good X by $\$ 20$ and have no effect on good Y . Using the elasticity to find the change in the quantity of good X :

$$
\begin{aligned}
& \eta=\% \Delta \mathrm{Q} / \% \Delta \mathrm{P} \\
& \% \Delta \mathrm{Qx}=\eta * \% \Delta \mathrm{Px} \\
& \% \Delta \mathrm{Qx}=(-1) *((120-100) / 100)=(-1) *(20 \%)=-20 \%
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \mathrm{Qx}=-0.2 * 1000=-200 \\
& \mathrm{Qx}=1000-200=800
\end{aligned}
$$

Revenue raised: $\$ 20 * 800=\$ 16,000$. Deadweight loss: $0.5 * \$ 20 *(1,000-800)=\$ 2,000$.
Policy 2 would raise the price of each good by $\$ 10$. Since each good originally sells for $\$ 100$, that's an increase of 10%. Using the elasticity formula to find the changes in Qx and Qy (both will be the same):

$$
\begin{aligned}
& \% \Delta \mathrm{Qx}=\eta * \% \Delta \mathrm{Px}=(-1) *(10 \%)=-10 \% \\
& \% \Delta \mathrm{Qy}=\eta * \% \Delta \mathrm{Py}=(-1) *(10 \%)=-10 \% \\
& \Delta \mathrm{Qx}=-0.1 * 1000=-100 \\
& \Delta \mathrm{Qy}=-0.1 * 1000=-100 \\
& \mathrm{Qx}=1000-100=900 \\
& Q y=1000-100=900
\end{aligned}
$$

Revenue raised: $\$ 10 * 900+\$ 10 * 900=\$ 18,000$. Deadweight loss: $0.5 * \$ 10 *(1,000-900)+$ $0.5 * \$ 10 *(1,000-900)=\$ 500+\$ 500=\$ 1,000$.

Policy 2 is unambiguously better: it raises $\$ 2,000$ more revenue and has $\$ 1,000$ less deadweight loss. That turns out to be true in general, by the way: several small taxes are almost always better than one big one.

