Solution to Exam 1

Fall 2007

Here are notes on the solution. Some of the graphs may be omitted and the explanations are a bit terse. If you have any questions, please don't hesitate to stop by during office hours or the lab session to talk over things in detail.

Part 1

1(a) Finding the initial equilibrium
The first step is to solving for the individual demand curves for people of each type. For type A, the curve is given:

$$
\mathrm{Qa}=200
$$

For type B, it is found as follows:

$$
\begin{aligned}
& \mathrm{W} 2 \mathrm{~Pb}=\mathrm{P} \\
& 40-0.2 * \mathrm{Qb}=\mathrm{P} \\
& 0.2 * \mathrm{Qb}=40-\mathrm{P} \\
& \mathrm{Qb}=(40-\mathrm{P}) / 0.2 \\
& \mathrm{Qb}=200-5 * \mathrm{P}
\end{aligned}
$$

The market demand (Q) is the sum over all the buyers:

$$
\begin{aligned}
& \mathrm{Qd}=5 * \mathrm{Qa}+10 * \mathrm{Qb} \\
& \mathrm{Qd}=5 *(200)+10 *(200-5 * \mathrm{P}) \\
& \mathrm{Qd}=1000+2000-50 * \mathrm{P} \\
& \mathrm{Qd}=3000-50 * \mathrm{P}
\end{aligned}
$$

On the supply side (using Qs for clarity):

$$
\begin{aligned}
& \mathrm{W} 2 \mathrm{~A}=\mathrm{P} \\
& \mathrm{Qs} / 100=\mathrm{P}
\end{aligned}
$$

$$
\mathrm{Qs}=100 * \mathrm{P}
$$

Finding the equilibrium:

$$
\begin{aligned}
& \mathrm{Qd}=\mathrm{Qs} \\
& 3000-50 * \mathrm{P}=100 * \mathrm{P} \\
& 3000=150 * \mathrm{P} \\
& \mathrm{P}=20 \\
& \mathrm{Qs}=100 * \mathrm{P}=100 * 20=2000
\end{aligned}
$$

$$
\text { Checking: } \mathrm{Qd}=3000-50 * 20=3000-1000=2000
$$

Consumption by a person of each type:

$$
\begin{aligned}
& \mathrm{Qa}=200 \\
& \mathrm{Qb}=200-5^{*} \mathrm{P}=200-5^{*} 20=100
\end{aligned}
$$

Checking: $\mathrm{Qd}=5 * 200+10 * 100=1000+1000=2000$
1(b) Finding the equilibrium with a $\$ 12$ tax
The tax introduces a gap between what the buyer pays (Pb) and what the seller gets to keep (Ps):

$$
\mathrm{Pb}=\mathrm{Ps}+\operatorname{tax}=\mathrm{Ps}+\$ 12
$$

Rearranging the demand curve to find Pb for any given Q :

$$
\begin{aligned}
& \mathrm{Qd}=3000-50 * \mathrm{~Pb} \\
& 50 * \mathrm{~Pb}=3000-\mathrm{Qd} \\
& \mathrm{~Pb}=(3000-\mathrm{Qd}) / 50
\end{aligned}
$$

The supply curve is already in the right form:

$$
\mathrm{Ps}=\mathrm{Qs} / 100
$$

Inserting Pb and Ps into the equation with the tax, and setting $\mathrm{Qd}=\mathrm{Qs}=\mathrm{Q}$:

$$
(3000-\mathrm{Q}) / 50=\mathrm{Q} / 100+12
$$

$$
\begin{aligned}
& 3000-\mathrm{Q}=\mathrm{Q} / 2+12 * 50=\mathrm{Q} / 2+600 \\
& 2400=(3 / 2) * \mathrm{Q} \\
& \mathrm{Q}=1600 \\
& \mathrm{Ps}=1600 / 100=16 \\
& \mathrm{~Pb}=(3000-1600) / 50=1400 / 50=28 \\
& \text { Checking: } \mathrm{Ps}+12=16+12=28=\mathrm{Pb}
\end{aligned}
$$

Consumption by each type:
$\mathrm{Qa}=200$
$\mathrm{Qb}=200-5^{*} \mathrm{~Pb}=200-5^{*} 28=200-140=60$
Checking: $5 * 200+10 * 60=1000+600=1600$
1(c) Revenue and surplus
Overall effects:

$$
\begin{aligned}
& \text { Revenue }=12 * 1600=19,200 \\
& \Delta \mathrm{CS}=-((28-20) * 1600+0.5 *(28-20) * 400)=-(12,800+1,600)=-14,400 \\
& \Delta \mathrm{PS}=-((20-16) * 1600+0.5 *(20-16) * 400)=-(6,400+800)=-7,200
\end{aligned}
$$

$\mathrm{DWL}=$ lost surplus less gain in revenue
DWL $=(14,400+7,200)-19,200$
DWL $=2,400$
Change in CS for each type:

$$
\begin{aligned}
& \Delta \mathrm{CSa}=-(28-20) * 200=-1,600 \\
& \Delta \mathrm{CSb}=(28-20) * 60+0.5 *(28-20) *(100-60)=480+160=640
\end{aligned}
$$

Type-A consumers are hurt more because they consumed more of the good to begin with, and because their demand is inelastic. Type-B consumers avoid some of the tax because their consumption of the good drops.

Part 2

2(a) Effect of the tax

Since the W2A curve is perfectly elastic at $\$ 1$, the supply curve with the tax will be horizontal at $\mathrm{Ps}=\mathrm{W} 2 \mathrm{~A}+\$ 0.2=\$ 1.20$. The new price will thus be $\$ 1.20$. To find the new quantity, use the elasticity of demand:

$$
\begin{aligned}
& \eta=\% \Delta Q / \% \Delta P \\
& \% \Delta Q=\eta * \% \Delta P \\
& \% \Delta P=(1.20-1) / 1=0.2=20 \% \\
& \% \Delta Q=-0.5 * 20 \%=-10 \%=-0.1 \\
& \Delta Q=-0.1 * 1 M=-100,000 \\
& Q=1 M-100,000=900,000
\end{aligned}
$$

Effects on revenue and surplus:

$$
\begin{aligned}
& \text { Revenue }=\$ 0.2 * 900,000=\$ 180,000 \\
& \Delta \mathrm{CS}=-(0.2 * 900,000+0.5 * 0.2 *(1 \mathrm{M}-900,000))=-(180 \mathrm{~K}+10 \mathrm{~K})=-190,000 \\
& \Delta \mathrm{PS}=0 \\
& \mathrm{DWL}=190,000-180,000=10,000
\end{aligned}
$$

Checking: DWL $=0.5 * 0.2 * 100 \mathrm{~K}=\$ 10,000$

2(b) Effect of the subsidy

Because the W2A curve is perfectly elastic at $\$ 10$, the initial price will be $\$ 10$ as well. The $\$ 2$ subsidy, therefore, will lower the buyer price to $\$ 8$:

$$
\begin{aligned}
& \mathrm{Ps}=\mathrm{Pb}+\text { subsidy } \\
& \mathrm{Pb}=\mathrm{Ps}-\text { subsidy }=\$ 10-\$ 2=\$ 8
\end{aligned}
$$

The change in Q can be found using the elasticity:

$$
\eta=\% \Delta Q / \% \Delta P
$$

$$
\begin{aligned}
& \% \Delta \mathrm{Q}=\eta * \% \Delta \mathrm{P} \\
& \% \Delta \mathrm{P}=(8-10) / 10=-0.2=-20 \% \\
& \% \Delta \mathrm{Q}=-1 *(-20 \%)=20 \%=0.2 \\
& \Delta \mathrm{Q}=0.2 * 100 \mathrm{~K}=20,000 \\
& \mathrm{Q}=100 \mathrm{~K}+20,000=120,000
\end{aligned}
$$

Computing the amount needed for the subsidy:
Subsidy cost $=\$ 2 * 120,000=\$ 240,000$
The cost of the subsidy is substantially higher than the revenue raised by the tax on good A . The policy will create a deficit of $\$ 240,000-\$ 180,000=\$ 60,000$.

Part 3

The market diagram is shown below. From the perspective of employers, the $\$ 7$ minimum is a 40% increase in the wage: $(7-5) / 5=0.4$. They will reduce the number of hours they purchase to Q2, which can be computed using the demand elasticity.

$$
\begin{aligned}
& \eta=\% \Delta Q / \% \Delta P \\
& \% \Delta Q=\eta * \% \Delta P \\
& \% \Delta Q=-0.5 *(40 \%)=-20 \% \\
& \Delta Q=-0.2 * 2 \text { million }=-400,000 \text { hours } \\
& Q 2=2 \text { million }-400,000=1.6 \text { million hours }
\end{aligned}
$$

The effect on employers is the reduction in consumer surplus they
 receive. In the diagram, it's areas A+B. Computing it:

$$
\begin{aligned}
& \Delta \mathrm{CS}=-(\mathrm{A}+\mathrm{B}) \\
& \Delta \mathrm{CS}=-(\$ 2 * 1.6 \mathrm{M}+0.5 * \$ 2 * 400 \mathrm{~K})=-(\$ 3.2 \mathrm{M}+\$ 400 \mathrm{~K})=-\$ 3.6 \mathrm{M}
\end{aligned}
$$

The effect on employees is mixed. On one hand, they work 400,000 fewer hours but on the other hand, those working are paid more. As a group, they gain some producer surplus from the higher wage ($\operatorname{area} \mathrm{A}$) but lose some due to the cut in hours (area C). Area A was already computed above and is $\$ 3.2 \mathrm{M}$. To compute area C, it's necessary to determine "x": the W2A at Q2. That can be done using the supply elasticity as follows:

$$
\begin{aligned}
& \eta \mathrm{S}=\% \Delta \mathrm{Q} / \% \Delta \mathrm{P} \\
& \% \Delta \mathrm{Q}=-20 \% \text { (from above) } \\
& -1=20 \% / \% \Delta \mathrm{P} \\
& \% \Delta \mathrm{P}=-20 \% \\
& \Delta \mathrm{P}=-0.2 * \$ 5=-\$ 1 \\
& x=\$ 5-\$ 1=\$ 4 \\
& C=0.5 *(\$ 5-\$ 4) * 400,000=\$ 200 \mathrm{~K} \\
& \Delta \mathrm{PS}=\$ 3.2 \mathrm{M}-\$ 200 \mathrm{~K}=\$ 3 \mathrm{M}
\end{aligned}
$$

Calculating deadweight loss:
DWL $=$ cost to employers - benefits to employees
DWL $=\$ 3.6 \mathrm{M}-\$ 3 \mathrm{M}=\$ 600 \mathrm{~K}$
Checking: DWL $=0.5 *(\$ 7-\$ 4) * 400 \mathrm{~K}=\$ 600 \mathrm{~K}$

