Asymmetric Information: Health Insurance

Possible future states for a buyer:

State	Payoff
Sick (S)	$X_S = \$100k$
Well (W)	$X_W = \$0$

Buyers differ in risk of S, ρ_S :

Туре	Chance of S	Chance of W
High (H)	$ \rho_S = 0.1 $	$ \rho_{W} = 0.9 $
Low (L)	$ \rho_S = 0.01 $	$ \rho_W = 0.99 $

Expected value of insurance?

$$EV = \rho_S * X_S + \rho_W * X_W$$

By buyer type:

Type	EV	Value
Н	$EV_H = 0.1 * \$100k + 0.9 * \0	\$10k
L	$EV_L = 0.01 * \$100k + 0.99 * \0	\$1k

Distribution of types?

Type	% of Pop
------	----------

Distribution of types?

Туре	% of Pop
Н	20%
L	80%

Charge the expected cost?

$$EV_A = \rho_H * EV_H + \rho_L * EV_L$$

 $EV_A = 0.2 * $10k + 0.8 * $1k$
 $EV_A = $2.8k$

Who buys?

Туре	Benefit	Cost	Net	Buy?
Н	\$10k	\$2.8k	\$7.2k	Yes
L	\$1k	\$2.8k	-\$1.8k	No

Pool after adverse selection:

Туре	% of Pop
Н	100%
L	0%

Charge the expected cost?

$$EV_A = \rho_H * EV_H + \rho_L * EV_L$$

 $EV_A = 1.0 * $10k + 0 * $1k$
 $EV_A = $10k$

Who buys?

Туре	Benefit	Cost	Net	Buy
Н	\$10k	\$10k	\$0	Yes
L	\$1k	\$10k	-\$9k	No

How bad is the outcome?

Suppose population = 1000

Sick people and spending:

Туре	Population	Sick	Spending
Н	0.2*1000 = 200	0.1*200 = 20	\$100k*20 = \$2M
L	0.8*1000 = 800	0.01*800 = 8	\$100k*8 = \$800k
Total	1000	28	\$2.8M

Uncovered portion, L share of sick individuals: