#### **Waiver Market Results**

#### Market diagram:



$$P^* = $20$$
  
 $Q^* = 5$ 

#### Detailed data:

| Waiver | WTP | Р  | WTA | Trades? | CS | PS |
|--------|-----|----|-----|---------|----|----|
| 1      | 100 | 20 | 5   | yes     | 80 | 15 |
| 2      | 50  | 20 | 10  | yes     | 30 | 10 |
| 3      | 25  | 20 | 15  | yes     | 5  | 5  |
| 4      | 20  | 20 | 20  | yes     | 0  | 0  |
| 5      | 20  | 20 | 20  | yes     | 0  | 0  |
| 6      | 20  | 20 | 30  | no      |    |    |
| 7      | 15  | 20 | 50  | no      |    |    |
| 8      | 15  | 20 | 100 | no      |    |    |
| 9      | 15  | 20 | 100 | no      |    |    |

Computing the total CS and PS:

CS: 80+30+5+0+0 \$115

PS: 15+10+5+0+0 \$30

Social surplus, SS, is CS + PS:

# SS is the overall *gain from trade*: Net benefits produced by trading

#### Showing total CS and PS in the graph:



#### Exploring gains from trade a bit more:

Total value of waivers to owners?

Before trading:

Sum of WTAs = \$350

After trading:

Sum of WTPs for buyers: \$215

Sum of WTAs for non-sellers: \$280

Total \$495

Net gain:

\$495 - \$350 = \$145

#### Economic value is **not** P\*Q:

Value to owners after trades: \$495

Why the big difference?

## Finally, WTP vs WTA bids:

Mean of WTP bid 1's: \$9

Mean WTA: \$39

## **Impacts on Agents**

## Determine Q's using individual demands and supplies

Evaluate each at  $P = P^* = 10$ 

**Buyers:** 

$$Q_A^D = 10 - 0.5P$$
  $Q_A^D = 5$   
 $Q_B^D = 20 - P$   $Q_B^D = 10$ 

$$Q_A^D = 5$$

$$Q_B^D = 20 - P$$

$$Q_{R}^{D} = 10$$

Total

Sellers:

$$Q_E^S = 0.5P$$

$$Q_E^S = 5$$

$$Q_F^S = P$$

$$Q_F^S = \frac{10}{10}$$

Total

Note: it's a coincidence that  $Q_A^D=Q_E^S$  and  $Q_B^D=Q_F^S$ 

#### Now compute welfare impacts: CS and PS

With algebraic equations CS and PS are computed using areas:

- CS is the area below WTP and above P (adds up WTP P)
- PS is the area below P and above WTA (adds up P WTA)

Implementing here:













$$CS_A = \frac{1}{2}(5)(20 - 10)$$
  
 $CS_A = $25$ 

$$CS_A = \frac{1}{2}(5)(20 - 10)$$
  $CS_B = \frac{1}{2}(10)(20 - 10)$   $CS_M = \frac{1}{2}(15)(20 - 10)$   $CS_A = \$25$   $CS_B = \$50$   $CS_M = \$75$ 

-10) 
$$CS_M = \frac{1}{2}(15)(20 - 10)$$
  
 $CS_M = $75$ 







$$PS_E = \frac{1}{2}(5)(10 - 0)$$

$$PS_E = \$25$$

$$PS_F = \frac{1}{2}(10)(10 - 0)$$

$$PS_F = \$50$$

$$PS_E = \frac{1}{2}(5)(10 - 0)$$
  $PS_F = \frac{1}{2}(10)(10 - 0)$   $PS_M = \frac{1}{2}(15)(10 - 0)$   
 $PS_E = \$25$   $PS_F = \$50$   $PS_M = \$75$ 

#### Total gain:

# **Properties of the Market Equilibrium**

(1) At price  $P^*$  where  $Q_M^D=Q_M^S$ 

At all other prices  $Q_M^D \neq Q_M^S$ 





# (2) At quantity $Q^*$ where $WTP_M = WTA_M$

All other Q's have  $WTP_M \neq WTA_M$ 







# (3) Generates maximum possible gains from trade

Gain on trade of unit  $Q_i$ :

$$SS_{i} = CS_{i} + PS_{i}$$

$$SS_{i} = (WTP_{i} - P) + (P - WTA_{i})$$

$$SS_{i} = WTP_{i} - WTA_{i}$$



Total gain on  $Q^*$  units:



 $\mathit{SS}_M$  smaller if stop at  $Q_1 < Q^*$ 



A = gains foregone by stopping at  $Q_1$ Missed SS is called <u>deadweight loss</u> (DWL)



 $B = loss from going beyond <math>Q^*$ Also missed SS, so also DWL

Maximum possible gains at  $Q^*$ :

- All trades occur where WTP > WTA
- No trades occur where WTP < WTA
- No DWL

## (4) Is Pareto efficient

Next page...

## **Pareto Efficiency**

Definition: efficiency

An outcome is **Pareto efficient** when no one can be made better off without making someone else worse off.

Corollary: inefficiency

An outcome is **inefficient** when someone *can* be made better off *without* making anyone worse off.

Possible to rearrange the outcome to help someone without hurting anyone.

"Money left on the ground"

## Policy implication:

Want to detect and fix inefficient outcomes

Look for *Pareto improvements*:

Action that makes someone better off without hurting anyone

Market  $Q^*$  is efficient; other Qs are inefficient

#### Case 1:

If  $Q_1 < Q^{\ast}$  a Pareto improvement is possible by increasing Q

## Example:

Suppose WTP and WTA have the values below



# Possible Pareto improvement 1:



Possible Pareto improvement 2:



$$P = $12$$

$$PS = $4$$

$$CS = $0$$

## Possible Pareto improvement 3:



## Many possible improvements:

- All produce a gain of \$4
- Stopping at  $Q_1$  is not efficient.

#### Case 2:

If  $Q_2 > Q^*$  a Pareto improvement is possible by decreasing Q



Loss of SS: \$9 - \$11 = -\$2

## Possible Pareto improvement:

- 1. Cancel  $Q_4$
- 2. Seller gives buyer \$9 instead

Seller gain: \$11 - \$9 = \$2

Buyer gain: \$9 - \$9 = \$0

# Inefficiency and deadweight loss:

- If there is *DWL* the outcome is *inefficient*
- Could make someone better off

# **Analyzing Policies**

## Core approach:

Compute two market outcomes for two cases:

- (1) Baseline or "business as usual" (BAU)
- (2) Policy scenario with the policy change in place

## Compare the results:

Changes in prices, quantities, CS, PS and more

Formally known as comparative statics

Example: imposing a new sales tax

| Case | Description              | Tax   |
|------|--------------------------|-------|
| 1    | BAU: no tax              | T = 0 |
| 2    | Policy: tax \$T per unit | T > 0 |

#### Types of sales taxes:

Unit tax: \$ tax per unit [this example]

Ad valorem tax: % of price [more common]

## Adds a complication:

Tax causes buyer and seller prices to differ

Define two prices:

Price paid by buyer:  $P^d$ 

Price seller keeps:  $P^s$ 

Visualizing the flow of money through a transaction:



In algebra:

$$P^d = P^s + T$$

What goes into the transaction must equal what comes out. Technically, an *accounting identity* 

Changing the decision rules accordingly:

Buyers buy until  $Q^*$  where:  $WTP(Q^*) = P^d$ 

Sellers sell until:  $WTA(Q^*) = P^s$ 

#### Moves the equilibrium to an inefficient Q

Can see by substituting decision rules into accounting equation:

$$P^d = P^s + T$$

$$WTP(Q^*) = WTA(Q^*) + T$$

Implication:

- If T > 0, will end up at  $Q^*$  where  $WTP(Q^*) > WTA(Q^*)$
- Q\* will be too small

## Intuition behind inefficiency?

1. Rewrite equation:

$$WTP(Q^*) - WTA(Q^*) = T$$

2. Also know difference is SS:

$$WTP(Q^*) - WTA(Q^*) = SS(Q^*)$$

3. Thus, at new  $Q^*$ :

$$SS(Q^*) = T$$

Last unit has SS = T:

Tax eliminates all trades with SS gains less than T