Daily Exercise Solution

Given information:

$$P_1^d = $200$$

 $Q_1^d = 1,000$
 $\eta = -4$

$$P_2^d = \$210$$

Solving for Q_2^d :

$$\%\Delta P^d = \frac{210 - 200}{200} = \frac{10}{200} = 0.05 = 5\%$$

$$\eta = \frac{\% \Delta Q^d}{\% \Delta P^d}$$

$$\%\Delta Q^d = (\eta) *\%(\Delta P^d)$$

 $\%\Delta Q^d = (-4) * (5\%)$
 $\%\Delta Q^d = -20\%$

$$Q_2^d = 1000 - 0.2 * 1000 = 800$$

Graphing:

Calculating the areas:

$$A = 10*800 = 8,000$$

$$B = 0.5*10*200 = 1,000$$

$$\Delta CS = -(8,000 + 1,000) = -9,000$$

Calculating the DWL ratio:

$$\frac{DWL}{Revenue} = \frac{B}{A} = \frac{1,000}{8,000} = 0.125 = 12.5\%$$

Going beyond the exercise:

Ratio is better for less elastic demands.

Example:

Same initial price and quantity

$$\eta = -1$$

Q drops much less:

$$\%\Delta Q^d = \Re(\Delta P^d)$$

$$\%\Delta Q^d = (-1)(5\%)$$

$$\%\Delta Q^d = -5\%$$

$$Q_2^d = 0.95 * 1,000 = 950$$

Revenue larger and DWL smaller:

$$A = 10*950 = 9,500$$

$$B = 0.5*10*50 = 250$$

Ratio far smaller:

$$\frac{DWL}{Revenue} = \frac{250}{9,500} = 0.026 = 2.6\%$$

General principle:

Tax least elastic goods to minimize DWL