Second Type of Policy: Tariff

Tax that differs by the source of good

Source	Tax
Foreign	T
Domestic	0

Stylized example: Harley Davidson Tariff in the 1980s

45% tax on motorcycles competing with Harleys

Two suppliers:

Harley: H

Japan: J

Assume (heroically!) products are identical: All sell in a single market at the same P^d

Case 1: BAU

No tariff

Initial prices:

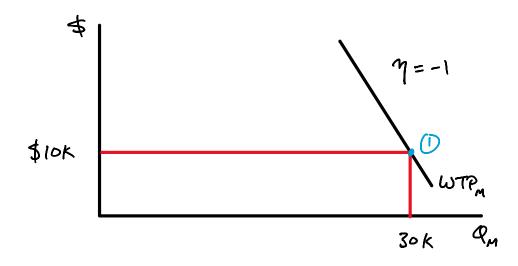
$$P_1^d = \$10,000$$

 $P_{1H}^s = P_{1I}^s = P^d = \$10,000$

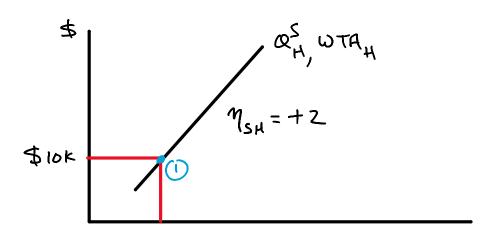
Initial quantities:

Total sales:	Q_M^D	30,000
Harley:	Q_H^S	10,000
Japan:	Q_I^S	20,000

Elasticities:

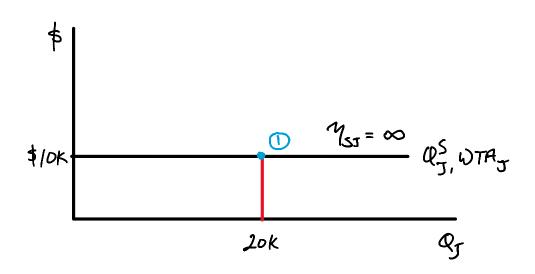

Demand: $\eta = -1$

Harley: $\eta_{SH} = +2$


Japan: $\eta_{sJ} = \infty$ at $WTA_J = \$10,000$

Graphing the individual pieces:

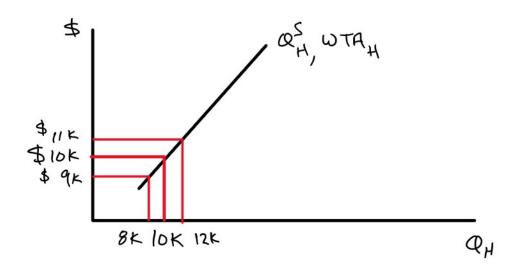
Market demand



Harley's supply

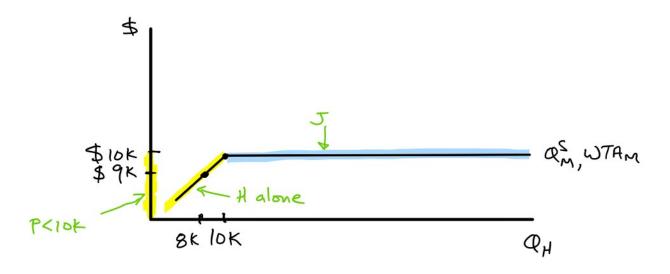
lok QH

Japan's supply


Constructing the market supply:

Step 1: calculate a couple of extra points for Harley

$$\eta_{SH} = +2 = \frac{\% \Delta Q_H^S}{\% \Delta P_H^S}$$


$$\%\Delta Q_H^S = 2 * \%\Delta P_H^S$$

Р	ΔP	$\%\Delta P$	$\%\Delta Q_H^S$	ΔQ_H^S	Q_H^S
9,000	-1,000	-10%	2(-10%)	-2,000	8,000
10,000	0	0%		0	10,000
11,000	+1,000	+10%	2(10%)	+2,000	12,000

Step 2: add $Q_H^{\mathcal{S}}$ and $Q_J^{\mathcal{S}}$ at each possible price

- Only Harley sells if $P < \$10,\!000$ ($Q_J^S = 0$)
- Japan sells any amount at P=\$10,000
- Japan sells very large amount if P > \$10,000

Add market demand to finish diagram:

Case 2: new \$1,000 tariff

Buyer pays same price for either bike: P_2^d

Seller prices will differ:

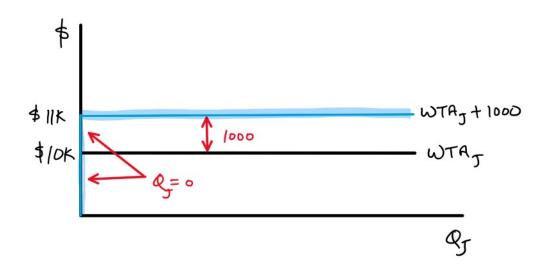
Accounting rule for supplier $i: P_2^d = P_{2i}^s + T_i$

Solving for seller price: $P_{2i}^s = P_2^d - T_i$

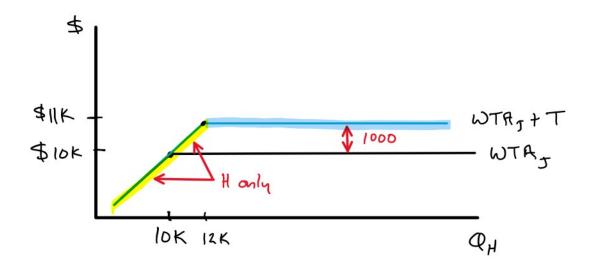
Harley: $P_{2H}^{s} = P_{2}^{d} - 0$

Japan: $P_{2J}^s = P_2^d - \$1000$

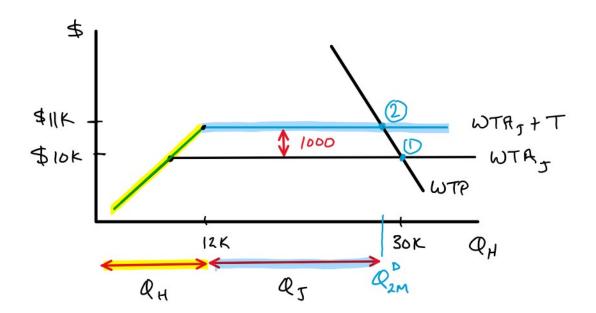
Has a large impact on Japan's supply:


Japan *only* supplies if $P_{2J}^S \ge WTA_J$ How high does P_2^d need to be?

$$P_{SI}^S \ge WTA_I$$


$$P_2^d - \$1000 \geq \$10,\!000$$

$$P_2^d \ge \$11,000$$


Japan supplies 0 below \$11,000 Only Harley will sell below \$11,000

New market supply curve:

Adding in the market demand:

Use the market demand elasticity to find the new Q_{2M}^D :

$$\eta = \frac{\% \Delta Q^{D}}{\% \Delta P^{d}}$$

$$\% \Delta P^{d} = \frac{1,000}{10,000} = 10\%$$

$$-1 = \frac{\% \Delta Q^{D}}{10\%}$$

$$\% \Delta Q^{D} = -10\%$$

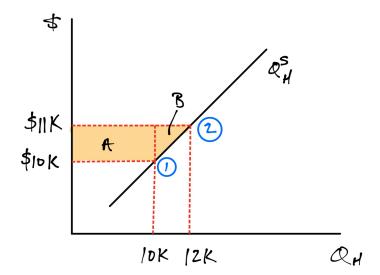
$$\Delta Q = (-0.1)(30,000) = -3,000$$

$$Q_{2M}^{D} = 27,000$$

Can find Japan's Q as a residual:

$$Q_{2H}^s = 12,000$$

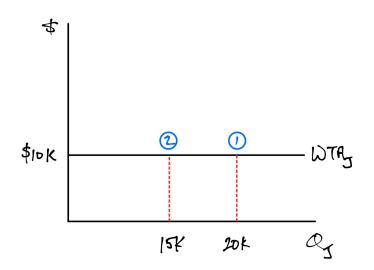
$$Q_{2M}^D = 27,\!000$$


$$Q_{2H}^S + Q_{2J}^S = Q_{2M}^D$$

$$12,000 + Q_{2J}^S = 27,000$$

$$Q_{2J}^S = 15,\!000$$

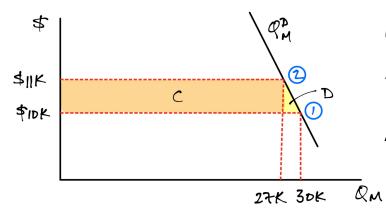
Impacts on Welfare


Harley's ΔPS_H :

$$A = \$1,000 * 10,000 = \$10 M$$

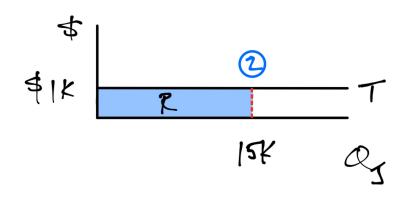
 $B = \frac{1}{2}(\$1000) * (2,000) = \$1 M$

$$\Delta PS_H = +\$11 M$$


Japan's ΔPS_J :

Case	P_J^S	WTA_J	PS_J
1	\$10,000	\$10,000	0
2	\$10,000	\$10,000	0

$$\Delta PS_J = 0$$


Buyers' ΔCS :

$$C = \$1,000 * 27,000 = \$27 M$$

 $D = \frac{1}{2}(\$1,000) * \$3,000 = \$1.5 M$

$$\Delta CS = -\$28.5 M$$

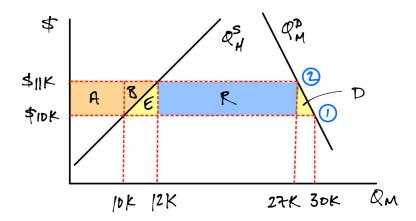
New government revenue ΔRev :

$$R = \$1,000 * 15,000 = \$15 M$$

Overall ΔSS :

ΔPS_H	+\$11 M
ΔPS_J	\$0
ΔCS	-\$28.5 M
ΔRev	+\$15 M

$$\Delta SS = -\$2.5 M \text{ (or DWL} = \$2.5 M)$$


Consumers lose more than Harley and the government gain.

Two Forms of Inefficiency

Overall DWL has two distinct components:

- 1. Lost gains from trade [form of DWL so far]
- 2. Foregone saving on lower cost motorcycles [new form]

Assembling the complete market diagram:

$$\Delta PS_H = A + B$$

$$\Delta PS_J = 0$$

$$\Delta CS = -(A + B + E + R + D)$$

$$\Delta Rev = R$$

$$\Delta SS = -(D+E)$$

Area D

Lost gains from trade on 3,000 motorcycles no longer sold. Value = \$1.5 M

Area E

New component: lost CS not received by anyone

Value =
$$\frac{1}{2}(2,000) * $1,000 = $1 M$$

Total DWL

Matches previous calculation: \$1.5 M + \$1 M = \$2.5 M

Where does E go?

Motorcycles between 10K and 12K now produced at higher cost.

Can see from total WTA required by each producer for those bikes

Potential gain from switching from Harley back to Japan:

Save F: +\$21 M

Spend G: -\$20 M

Net = +\$1 M