Third intervention will be subsidies:

Policies to encourage an activity and raise Q

Usual rationale:

Activity creates a positive externality

Externality:

An unintended cost or benefit created for a third party as a result of a transaction.

Two types:

1. Cost or *negative* externality

Examples: pollution, noise, blighted property

Economics: traders don't pay the full cost of their actions

2. Benefit or positive externality

Examples: vaccinations, learning effects, landscaping

Economics: traders don't receive the full benefits of their actions

Consequence:

If an externality is present the market outcome will be inefficient.

Example: positive externality

Demand and supply:

$$WTP = 100 - Q_M^D$$

$$WTA = 40$$

Externality:

Generates \$5 benefit for every unit traded

Marginal benefit:

$$MB_e = 5$$

Market equilibrium with no policy:

$$WTP = P^d$$

$$WTA = P^s$$

$$P^d = P^s$$

$$100 - Q_M^D = 40$$

Market equilibrium: $Q_M^* = 60$

At
$$Q_M^* = 60$$
:

Gains from trade on last unit to traders:

$$WTP - WTA = \$0$$

Pareto improvement possible by raising Q

Consider unit 61:

$$WTP = 100 - 61 = $39$$

 $WTA = 40
 $MB_e = 5

Possible transaction: third party contributes \$1

Buyer: CS = WTP - P

CS = \$39 - \$39 = 0

Seller: PS = P - WTA

PS = (39 + 1) - 40 = 0

Outsider: $Net = MB_e - \$1$

Net = \$5 - \$1 = \$4

Pareto improvement:

Makes third party better off without making B or S worse off

Could keep going; on unit 62:

$$WTP = 100 - 62 = 38$$

$$WTA = 40$$

$$MB_e = 5$$

Third party contributes \$2: net gain is \$5 - \$2 = \$3

Generalizing: net gain is $(WTP + MB_e) - WTA$

For unit 62: (38 + 5) - 40 = \$3

In general: market Q is too low when a positive externality is present:

Market stops at Q where:

$$WTP = WTA$$

But increasing Q improves efficiency when:

$$WTP + MB_e > WTA$$

Efficient Q where no more gains are possible:

$$WTP + MB_e = WTA$$

Handy to define marginal social benefit (MSB):

 $MSB = WTP + MB_e$ Private benefits (WTP)

plus external benefits (MB_e)

Condition for efficient Q:

$$MSB = WTA$$

Finding the efficient Q in the example:

Construct the MSB curve:

$$MSB = WTP + MB_e$$

$$MSB = 100 - Q_M^D + 5$$

$$MSB = 105 - Q_M^D$$

Find Q where it's equal to WTA:

$$MSB = WTA$$

$$105 - Q_M^D = 40$$

$$Q_M^D = 65$$

Call this Q_{M}^{e} to indicate it's the efficient Q: $Q_{M}^{e}=65$

Check it:

$$WTP = 100 - 65 = 35$$

 $MB_e = 5$
 $MSB = 35 + 5 = 40$
 $WTA = 40$

MSB = WTA, no further improvements possible

To move the market to the efficient Q, can use a subsidy.

Government or other entity pays for part of a transaction:

Buyer pays: P^d

Government pays: S

New flow of money:

$$P^d + S = P^s$$

No change in the decision rules:

$$WTP = P^d$$

$$WTA = P^s$$

Designing a subsidy for the example model:

Step 1: find P_2^d needed for demand to hit target Q_M^e

$$100 - Q_M^D = P_2^d$$

$$100 - 65 = P_2^d$$

$$P_2^d = 35$$

Step 2: find P_2^s needed to induce supply

$$WTA = P_2^s$$
 In more complex problems, solve $P_2^S = \$40$ for Q where $P_2^S = WTA(Q_M^e)$

Step 3: use the accounting rule to find S

$$P_2^d + S = P_2^s$$

\$35 + S = \$40
 $S = 5

Efficient subsidy and MB_e :

In general, S will always be equal to MB_e at Q_M^e

For efficiency want:

$$WTP + MB_e = WTA$$

Effect of subsidy *S*:

Accounting: $P^d + S = P^s$

Buyer rule: $WTP = P^d$

Seller rule: $WTA = P^s$

Substituting into the accounting rule:

$$WTP + S = WTA$$

Now solve for the S to get to efficiency:

Goal: $WTP + MB_e = WTA$

Accounting: WTP + S = WTA

$$WTP + S = WTP + MB_e$$

$$S = MB_e$$

The subsidy should be set equal to the externality.

When MB_e is not be constant the rule applies at the efficient Q:

$$S = MB_e(Q_M^e)$$

Daily exercise 1 on Google Classroom