Initial information:

$$WTP = 100 - \frac{1}{5}Q_M^D$$

$$WTA = 40$$

$$MB_e = \frac{1}{20}Q_M^D$$

Graphing each piece:

Demand, WTP

Supply, WTA

Externality, MB_e

Solving for the market equilibrium:

$$WTP = WTA$$

$$100 - \frac{1}{5}Q_M^D = 40$$

$$Q_M^D = 300$$

Externality on unit 300:

$$MB_e = \frac{1}{20}(300) = $15$$

Graphing it:

Market

Externality

Now solve for the efficient equilibrium:

$$MSB = 100 - \frac{1}{5}Q_{M}^{D} + \frac{1}{20}Q_{M}^{D}$$

$$MSB = 100 - \frac{3}{20}Q_{M}^{D}$$

$$MSB = WTA$$

$$MSB = WTA$$

$$100 - \frac{3}{20} Q_M^D = 40$$

$$Q_M^D = \frac{20}{3} * 60$$
$$Q_M^D = 400$$

Calculating the subsidy needed:

Want:
$$Q_M^D = 400$$

P_2^d needed:

$$P_2^d = WTP$$

$$P_2^d = 100 - \frac{1}{5}Q_M^D$$

$$P_2^d = 100 - \frac{1}{5} * 400 = $20$$

P_2^s needed:

$$P_2^s = WTA$$

$$P_2^s = $40$$

Subsidy needed:

$$S = P_2^s - P_2^d = \$40 - \$20 = \$20$$

Check:

$$S = MB_e(Q_M^e) = \frac{1}{20} * 400 = $20$$

Impacts on welfare:

Buyers:

$$\Delta CS = +7,000$$

Sellers:

$$\Delta PS = 0$$

Government:

$$R = 20*400 = 8,000$$

$$\Delta Rev = -R$$

$$\Delta Rev = -8,000$$

Externality:

$$D = \frac{15+20}{2} * 100 = 1750$$

$$\Delta Ext = +D$$
$$\Delta Ext = +1,750$$

Overall impact on SS:

Buyers:	+7,000
Sellers:	0
Government:	-8,000
Externality:	+1,750

$$\Delta SS = +750$$

Combining into a single diagram:

$$\Delta SS = E$$

Negative Externality

Exactly reverse of positive externalities:

	Positive	Negative
Impact on third parties:	Benefit	Cost
Algebraic form:	MB_e	MC_e
Market Q:	Too small	Too large
Marginal social B or C:	$MSB = WTP + MB_e$	$MSC = WTA + MC_e$
Needed for efficiency:	MSB = WTA	WTP = MSC
Corrective policy:	$S = MB_e$	$T = MC_e$

Example:

$$WTP = 300 - Q_M^D$$

$$WTA = 2Q_M^S$$

$$MC_e = 60$$

Market equilibrium:

$$WTP = WTA$$

 $300 - Q_M^D = 2Q_M^S$
 $300 = 3Q_M^D$
 $Q_M^D = 100$

$$P_1^d = WTP = 300 - 100 = $200$$

 $P_1^s = WTA = 2(100) = 200

Efficient equilibrium:

$$MSC = 2Q_{M}^{S} + 60$$
 $WTP = MSC$
 $300 - Q_{M}^{D} = 2Q_{M}^{S} + 60$
 $240 = 3Q_{M}^{D}$
 $Q_{M}^{D} = 80$

$$P_2^d = WTP = 300 - 80 = 220$$

 $P_2^s = WTA = 2(80) = 160$

Policy needed:

$$P_2^d = P_2^s + T$$

$$220 = 160 + T$$

$$T = 60$$

Check: $T = MC_e = 60$

Welfare impacts:

 Δ CS, Δ PS, Δ Rev calculated as usual:

$$\Delta CS = -\left(\frac{80 + 100}{2}\right) * (220 - 200) = -\$1800$$

$$\Delta PS = \left(\frac{80 + 100}{2}\right) * (160 - 200) = -\$3600$$

$$\Delta Rev = 60 * 80 = +$4800$$

 ΔExt is the area under the MC_e curve between the old and new Q:

$$\Delta Ext = 60 * (100 - 80)$$

 $\Delta Ext = 60 * 20$
 $\Delta Ext = 1200

Computing ΔSS :

ΔCS -\$1800

ΔPS -\$3600

ΔRev +\$4800

 ΔExt +\$1200

 $\Delta SS = +\$600$

Cross-Subsidies

Definition:

A cross-subsidy is a policy that provides a subsidy in one market paid for by charging extra in another market.

In effect:

S in one market

T in another market

Usual goal:

Break even over all

Example: Post Office

Market	Cost per Letter
Urban (U)	WTA_U
Rural (R)	WTA_R

Rural is more expensive to serve:

$$WTA_R > WTA_U$$

Single weighted-average price *P* charged for both:

U: $P > WTA_U$

R: $P < WTA_R$

In effect, tax in U and subsidy in R:

$$T_U = P - WTA_U$$

$$S_R = WTA_R - P$$

Example: Local and long distance telephone service

Prior to deregulation in 1980's:

- One phone company in the US: ATT
- Two markets:
 - 1. Local lines (L)
 - 2. Long distance minutes (M)
- Prices regulated
- Allowed to charge extra in M to subsidize L

Analyze a stylized version below

Case 1: BAU

Local market (lines):

Price per month: $P_{L1} = 30

Quantity: $Q_{L1} = 100 k$

Demand elasticity: $\eta_L = -0.2$

Cost to provide: $WTA_L = ?$

Effective subsidy: S = ?

Long distance market (minutes):

Price per minute: $P_{M1} = \$0.25$

Quantity: $Q_{M1} = 10 M$

Demand elasticity: $\eta_M = -1$

Cost to provide: $WTA_M = \$0.10$

Effective tax: T = \$0.15

Budget is balanced:

Tax revenue in M = Subsidy expenditure in L

Graphing:

Determining S and WTA_L :

Tax revenue raised in long distance market (M):

$$\Delta Rev_M = \$0.15 * 10 M = \$1.5 M$$

Total subsidy expenditure in local market (L):

$$TotSub_L = S_L * Q_{L1} = S_L * 100 k$$

Budget balanced:

$$TotSub_L = \Delta Rev_M$$

$$S_L * 100 k = $1.5 M$$

Local subsidy per line:

$$S_L = \frac{\$1.5 \ M}{100 \ k} = \$15$$

 WTA_L :

$$P_{L1} + S = WTA_{L}$$

$$$30 + $15 = $45 = WTA_L$$

Case 2: Eliminate cross subsidy

Long distance market:

$$P_{M2} = WTA_M = \$0.10$$

$$\%\Delta P_M = -\frac{0.15}{0.25} = -60\%$$

$$\eta = \frac{\%\Delta Q_M}{\%\Delta P_M}$$

$$-1 = \frac{\%\Delta Q_M}{-60\%}$$

$$\%\Delta Q_M = +60\%$$

$$Q_{M2} = 10M + 0.6 * 10M = 16M$$

$$A = 0.15*10M = $1.5 M$$

 $B = 0.5*0.15*6M = $450 k$

$$\Delta CS = +(A + B) = \$1.95 M$$

 $\Delta Rev = -A = -\$1.5 M$

$$\Delta SS_M = +B = \$450 \ k$$

Removing the cross subsidy:

Net gain in long distance market

Market for local lines:

$$P_{L2} = WTA_L = \$45$$

$$\%\Delta P_L = +\frac{\$15}{\$30} = +50\%$$

$$\%\Delta Q_L = \eta_L * \%\Delta P_L$$

$$\%\Delta Q_L = -0.2 * 50\% = -10\%$$

$$Q_{L2} = 100 k - 0.1 * 100 k = 90 k$$

$$D = 0.5*15*10 k = $75 k$$

$$E = 0.5*15*10 k = $75 k$$

$$\Delta CS = -(C + D) = -\$1.425 M$$

 $\Delta Rev = +(C + D + E) = +\$1.5 M$

$$\Delta SS_L = +E = +\$75 k$$

Overall impact on both markets together:

Eliminating the cross subsidy:

Gain in long distance: \$450 k

Gain in local: \$75 k

Total gain: \$525 k

Interpretation:

Net cost of having the cross subsidy: \$525 k

Overall, cross subsidy has two impacts:

Costs \$1.950 M to M consumers

Delivers \$1.425 M to L consumers

