Modeling Individual Choice

Part 2 of the course:

Underpinnings of WTP, WTA and decision-making more generally

- Will allow analysis of more complex policies
 Example: raise tax on energy and lower tax on income
- Provides tools for complex decisions
 Involving long periods of time or uncertainty
- Overall, basis for advanced benefit-cost analysis (BCA)

Base model has four conceptual components:

1. Set of options available

What is the choice over?

Terminology: consumption bundles

2. Ranking

How does the decision maker feel about the options?

Terminology: *preferences*

3. Feasibility

What can the decision maker actually do?

Terminology: **budget constraints** and **feasible sets**

4. Choice

What does the decision maker choose?

Terminology: *optimum* or *equilibrium* bundle

Abstractly:

Consumption Bundles and Preferences

Bundles:

A bundle is a combination of goods

Examples:

Bundle	Books	DVDs
Α	1	2
В	2	2
С	2	1

Graphing:

Preferences:

Decision makers have preferences over bundles

Notation:

Ranking of bundles X and Y	Notation	Alternate
Prefers X to Y	X > Y	$Y \prec X$
Prefers Y to X	Y > X	$X \prec Y$
Indifferent between X and Y	$X \sim Y$	$Y \sim X$

Will also use $X \ge Y$ when X is at least as good as Y

Two axioms about preferences:

1. Completeness

Preferences are complete if any two bundles can be compared.

If offered X and Y, decision maker will say:

X is better	X > Y
Y is better	Y > X
X and Y are equally good	$X \sim Y$

Does **not** say "I don't know"

Conceptually, axiom limits the domain of the model:

Purpose:

Can't model choice if the decision maker can't choose

2. Transitivity

Preferences are *transitive* if the following is true when ranking any three bundles X, Y and Z:

If decision maker reports: $X \ge Y$ and $Y \ge Z$

Then they *also* report: $X \ge Z$

Person does **not** say $Z \ge X$

Special cases:

If
$$X > Y$$
 and $Y > Z$ Then $X > Z$ (Not $Z > X$)
If $X \sim Y$ and $Y \sim Z$ Then $X \sim Z$ (Not $X > Z$ or $Z > X$)

Implication: bundles can be put in unambiguous order

No loops in ranking

Transitive	Not transitive
a b d e f	6
$a > b > c \sim d > e > f$	a > b > c > a

Second limit on the domain of the model:

Similar purpose to completeness:

Can't model choice if the decision maker can't choose

Rational Preferences

If preferences satisfy completeness and transitivity: Then in economic terminology they are said to be rational

Economic definition of rational means **only** that a person has complete and transitive preferences.

Implies person makes purposeful, systematic choices.

Does not imply person is prudent, responsible, selfinterested, or anything else. Can encompass a very wide range of preferences.

Indifference Curves

Completeness and transitivity:

Allow preferences to be mapped using indifference curves (ICs)

Constructing an IC:

Suppose have bundle a and compare all other bundles to it:

Each will be better (> a), worse(< a) or the same ($\sim a$):

Connecting the dots equal to a gives indifference curve for a:

Usually show preferred region with an arrow:

Physical analogy:

Like a contour line on a topographic map and arrow points uphill.

Plane has a family of ICs; every bundle is on one:

Two key properties:

1. ICs can't cross: each bundle is on a single IC

To see why, suppose they did:

Implications:

From IC1: $a \sim c$

From IC2: $b \sim c$

By transitivity: $a \sim b$

However, both IC1 and IC2 say a > b, contradicting $a \sim b$.

Therefore, ICs can't cross:

Doing so violates transitivity

Physical analogy:

Every point has only one altitude

2. Slope of IC shows willingness to trade the goods

Known as the marginal rate of substitution (MRS)

Example: trading movies (M) for shows (S)

a to b:

$$MRS = \frac{\Delta Y}{\Delta X} = \frac{-2}{1} = -2$$

b to c:

$$MRS = \frac{-1}{1} = -1$$