Choosing bundle of current $\left(C_{0}\right)$ and future consumption $\left(C_{1}\right)$:

Constructing the feasible set:
What bundles of C_{0} and C_{1} are feasible?
To make concrete, suppose:

$$
\begin{aligned}
& I_{0}=50,000 \\
& I_{1}=60,000 \\
& r=10 \%
\end{aligned}
$$

First feasible point:
Consume income when it arrives: no saving or borrowing Called the endowment point ("e" in figures)

$$
\begin{aligned}
& C_{0}=I_{0}=50,000 \\
& C_{1}=I_{1}=60,000
\end{aligned}
$$

This example

General case

Also feasible: bundles reachable by saving

Suppose save in period 0:

$$
S=10,000 \text { to bank }
$$

Bank balance in period 1:

Variable	Example amount	General form
Principal:	$\$ 10,000$	S
Interest:	$0.1^{*} \$ 10,000=\$ 1,000$	$r S$
Total:	$\$ 11,000$	$S+r S=S(1+r)$

Cash flow diagram, from saver's perspective:

Horizontal axis: timeline
Inflows to agent: point up (positive)
Outflows from agent: point down (negative)

Adding point to the diagram:

This example

General case

Accessible via other amounts of saving:

Y intercept, future value of income (FVI):

$$
F V I=I_{1}+I_{0}(1+r)
$$

Slope:

$$
\frac{\Delta Y}{\Delta X}=\frac{S(1+r)}{-S}=-(1+r)
$$

Bundles feasible by borrowing:
Suppose borrow in period 0 :

$$
B=10,000 \text { from bank }
$$

Owed to bank in period 1:

Variable	Example amount	General form
Principal:	$\$ 10,000$	B
Interest:	$0.1^{*} \$ 10,000=\$ 1,000$	$r B$

Total: $\quad \$ 11,000 \quad B+r B=B(1+r)$

Cash flow diagram:

This example General

Adding to diagram:

This example

General case

Maximum loan, \hat{B}, that can be repaid using I_{1} :

$$
\hat{B}+r \hat{B}=\hat{B}(1+r)=I_{1}
$$

$$
\hat{B}=\frac{I_{1}}{1+r}
$$

$$
\hat{B}=\frac{60,000}{1.1}=54,545
$$

Maximum consumption \hat{C}_{0} :

$$
\begin{aligned}
& \hat{C}_{0}=I_{0}+\hat{B} \\
& \hat{C}_{0}=I_{0}+\frac{I_{1}}{1+r} \\
& \hat{C}_{0}=50,000+\frac{60,000}{1.1}=104,545
\end{aligned}
$$

Full range of bundles accessible by borrowing:

X intercept: present value of income (PVI)

$$
P V I=I_{0}+\frac{I_{1}}{1+r}
$$

Slope:

$$
\frac{\Delta Y}{\Delta X}=\frac{-B(1+r)}{B}=-(1+r)
$$

Finished two-period intertemporal BC:

Daily exercise on Google Classroom

