Life Cycle Model of Savings

Choosing bundle of current (C_0) and future consumption (C_1):

Constructing the feasible set:

What bundles of C_0 and C_1 are feasible?

To make concrete, suppose:

$$I_0 = 50,000$$

 $I_1 = 60,000$
 $r = 10\%$

First feasible point:

Consume income when it arrives: no saving or borrowing Called the endowment point ("e" in figures)

$$C_0 = I_0 = 50,000$$

 $C_1 = I_1 = 60,000$

Also feasible: bundles reachable by saving

Suppose save in period 0:

S = 10,000 to bank

Bank balance in period 1:

Variable	Example amount	General form
Principal:	\$10,000	S
Interest:	0.1*\$10,000 = \$1,000	rS
Total:	\$11,000	S + rS = S(1 + r)

Cash flow diagram, from saver's perspective:

This example

General

Horizontal axis:	timeline
Inflows to agent:	point up (positive)
Outflows from agent:	point down (negative)

Adding point to the diagram:

Accessible via other amounts of saving:

This example

General case

Y intercept, future value of income (FVI):

$$FVI = I_1 + I_0(1+r)$$

Slope:

$$\frac{\Delta Y}{\Delta X} = \frac{S(1+r)}{-S} = -(1+r)$$

Bundles feasible by borrowing:

Suppose borrow in period 0:

B = 10,000 from bank

Owed to bank in period 1:

Variable	Example amount	General form
Principal:	\$10,000	В
Interest:	0.1*\$10,000 = \$1,000	rB

Cash flow diagram:

Adding to diagram:

Maximum loan, \hat{B} , that can be repaid using I_1 :

$$\hat{B} + r\hat{B} = \hat{B}(1+r) = I_1$$

 $\hat{B} = \frac{I_1}{1+r}$
 $\hat{B} = \frac{60,000}{1.1} = 54,545$

Maximum consumption \hat{C}_0 :

$$\hat{C}_0 = I_0 + \hat{B}$$

$$\hat{C}_0 = I_0 + \frac{I_1}{1+r}$$

$$\hat{C}_0 = 50,000 + \frac{60,000}{1.1} = 104,545$$

Full range of bundles accessible by borrowing:

X intercept: present value of income (PVI)

$$PVI = I_0 + \frac{I_1}{1+r}$$

Slope:

$$\frac{\Delta Y}{\Delta X} = \frac{-B(1+r)}{B} = -(1+r)$$

Finished two-period intertemporal BC:

$$FVI = I_1 + I_0(1+r)$$
$$PVI = I_0 + \frac{I_1}{1+r}$$

Daily exercise on Google Classroom