Example: CD Preferences

First step: build a two-period version of the CD equations
Links between variables from last class:

Two goods	Two periods
P_{x}	$P_{0}=1$
Q_{x}	C_{0}
P_{y}	$P_{1}=1 /(1+r)$
Q_{y}	C_{1}
M	$P V I$

The intertemporal CD utility function is straightforward:

Two goods	Two periods
$U=Q_{x}^{a} Q_{y}^{1-a}$	$U=C_{0}^{a} C_{1}^{1-a}$

The demand equations are a bit more complicated:

Two goods	Two periods
$Q_{x}=\frac{a * M}{P_{x}}$	$C_{0}=\frac{a * P V I}{P_{0}}$
$Q_{y}=\frac{(1-a) * M}{P_{y}}$	$C_{1}=\frac{(1-a) * P V I}{P_{1}}$

Inserting P_{0} and P_{1} :

$$
\begin{aligned}
& C_{0}=\frac{a * P V I}{1} \\
& \mathrm{C}_{1}=\frac{(1-\mathrm{a}) * \mathrm{PVI}}{\frac{1}{1+\mathrm{r}}}
\end{aligned}
$$

Can simplify to:

$$
\begin{aligned}
& C_{0}=a * P V I \\
& C_{1}=(1+r) *(1-a) * P V I
\end{aligned}
$$

Summarizing the two-period CD functions:

$$
\begin{aligned}
& U=C_{0}^{a} C_{1}^{1-a} \\
& C_{0}=a * P V I \\
& C_{1}=(1+r) *(1-a) * P V I
\end{aligned}
$$

Example problem preferences and income:

$$
\begin{aligned}
& U=C_{0}^{\frac{1}{3}} C_{1}^{\frac{2}{3}} \\
& I_{0}=30 k \\
& I_{1}=30 k \\
& r=10 \%
\end{aligned}
$$

Computing PVI:

$$
\begin{aligned}
& P V I=I_{0}+\frac{I_{1}}{1+r} \\
& P V I=30 k+\frac{30 k}{1.1}=57.3 k
\end{aligned}
$$

Demands:

$$
\begin{aligned}
& C_{0}=a * P V I \\
& C_{0}=\left(\frac{1}{3}\right) * 57.3=19.1 \\
& C_{1}=(1+r) *(1-a) * P V I \\
& C_{1}=1.1 *\left(\frac{2}{3}\right) * 57.3=42.0
\end{aligned}
$$

Save or borrow?

$$
\begin{aligned}
& I_{0}=30 k \\
& C_{0}=19.1 k
\end{aligned}
$$

Saves in 0:

$$
30 k-19.1 k=10.9 k
$$

Earned in 1:

$$
S(1+r)=10.9 k * 1.1=12 k
$$

Check:

$$
I_{1}+S(1+r)=30 k+12 k=42 k=C_{1}
$$

Investing in education and training:
Spend money now in order to have higher wages in the future

Example:
Income endowment:

$$
\begin{aligned}
& I_{0}=25 k \\
& I_{1}=25 k
\end{aligned}
$$

Can also take classes in period 0 to raise income in period 1:
Define variables:
$T u=$ tuition paid at 0
$R a=$ raise in period 1

Suppose the following options are available:

Classes	$T u$	$R a$
0	0	0
1	5 k	10 k
2	10 k	17 k
3	15 k	23 k
4	20 k	28 k
5	25 k	32 k

Each class costs $\$ 5 \mathrm{k}$ and raises income, but at a decreasing rate

Resulting options for net income after accounting for tuition and raise:

$$
\begin{aligned}
& I_{0}^{n e t}=I_{0}-T u \\
& I_{1}^{n e t}=I_{1}+R a
\end{aligned}
$$

In thousands:

Classes	I_{0}		Tu	$I_{0}^{\text {net }}$	I_{1}			$R a$	$I_{1}^{\text {net }}$
0	25	0	25	25	0	25			
1	25	5	20	25	10	35			
2	25	10	15	25	17	42			
3	25	15	10	25	23	48			
4	25	20	5	25	28	53			
5	25	25	0	25	32	57			

Can choose income bundle by adjusting number of classes

Which number of classes is best?

Initially, suppose can't borrow or save: must consume net income
$C_{0}=I_{0}^{n e t}$
$C_{1}=I_{1}^{\text {net }}$
Graphing the options:

Now add ICs to find the option chosen:

Case 1: Very steep ICs

Case 2: Perfect complements

$$
\frac{C_{0}}{C_{1}}=\frac{1}{1}
$$

Case 3: ICs with more willingness to trade C_{0} for C_{1}

Linking N , tuition (Tu) and the raise (Ra):

Key insight:
Without borrowing or saving many preferences lead to $\mathrm{N}=0$ Examples: case 1 (impatient), case 2 (PC)

Now add option to borrow or save

Suppose $r=5 \%$

Now have two decisions:

1. Number of classes to take
2. Amount to borrow or save

Can think them through in that order

Suppose chooses $\mathrm{N}=0$; what bundles are feasible?

Net income for $\mathrm{N}=0$:
net

$$
\begin{aligned}
& I_{0}^{n e t}=25 k \\
& I_{1}^{n e t}=25 k
\end{aligned}
$$

$$
P V I=25 k+\frac{25 k}{1.05}=48.8 k
$$

Suppose chooses $N=1$; what bundles are feasible?

Net income for $\mathrm{N}=1$:

$$
\begin{aligned}
& I_{0}^{\text {net }}=25 k-5 k=20 k \\
& I_{1}^{\text {net }}=25 k+10 k=35 k \\
& P V I=20 k+\frac{35 k}{1.05}=53.3 k
\end{aligned}
$$

Overlaying the $B C 0$ and $B C 1$ sets:

Feasible set for BC 1 contains:

- All bundles in BCO (darker color)
- Plus bundles with more C_{0}, C_{1} or both (lighter color)

Implication:
BC1 is better for all preferences

Technically, BC1 dominates BCO

Applications Page 8

