Example: CD Preferences

First step: build a two-period version of the CD equations

Links between variables from last class:

Two goods	Two periods
P_{χ}	$P_0 = 1$
$Q_{\mathcal{X}}$	C_0
$P_{\mathcal{Y}}$	$P_1 = 1/(1+r)$
$Q_{\mathcal{Y}}$	C_1
М	PVI

The intertemporal CD utility function is straightforward:

Two goods	Two periods
$U = Q_x^a Q_y^{1-a}$	$U = C_0^a C_1^{1-a}$

The demand equations are a bit more complicated:

Two goods	Two periods
$Q_x = \frac{a * \mathbf{M}}{P_x}$	$C_0 = \frac{a * PVI}{P_0}$
$Q_{\mathcal{Y}} = \frac{(1-a) * M}{P_{\mathcal{Y}}}$	$C_1 = \frac{(1-a) * PVI}{P_1}$

Inserting P_0 and P_1 :

$$C_0 = \frac{a * PVI}{1}$$

$$C_1 = \frac{(1-a) * PVI}{\frac{1}{1+r}}$$

Can simplify to:

$$C_0 = a * PVI$$

$$C_1 = (1+r) * (1-a) * PVI$$

Summarizing the two-period CD functions:

$$U = C_0^a C_1^{1-a}$$

$$C_0 = a * PVI$$

$$C_1 = (1+r) * (1-a) * PVI$$

Example problem preferences and income:

$$U = C_0^{\frac{1}{3}} C_1^{\frac{2}{3}}$$

$$I_0 = 30k$$

$$I_1 = 30k$$

$$r = 10\%$$

Computing PVI:

$$PVI = I_0 + \frac{I_1}{1+r}$$

$$PVI = 30k + \frac{30k}{1.1} = 57.3k$$

Demands:

$$C_0 = a * PVI$$

$$C_0 = \left(\frac{1}{3}\right) * 57.3 = 19.1$$

$$C_1 = (1+r) * (1-a) * PVI$$

$$C_1 = 1.1 * \left(\frac{2}{3}\right) * 57.3 = 42.0$$

Save or borrow?

$$I_0 = 30k$$
$$C_0 = 19.1k$$

Saves in 0:

$$30k - 19.1k = 10.9k$$

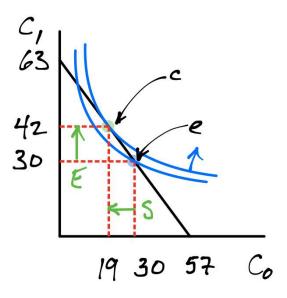
Earned in 1:

$$S(1+r) = 10.9k * 1.1 = 12k$$

Check:

$$I_1 + S(1+r) = 30k + 12k = 42k = C_1$$

Graphing:



Human Capital

Investing in education and training:

Spend money now in order to have higher wages in the future

Example:

Income endowment:

$$I_0 = 25k$$

$$I_1 = 25k$$

Can also take classes in period 0 to raise income in period 1:

Define variables:

Tu = tuition paid at 0

Ra = raise in period 1

Suppose the following options are available:

Classes	Tu	Ra
0	0	0
1	5k	10k
2	10k	17k
3	15k	23k
4	20k	28k
5	25k	32k

Each class costs \$5k and raises income, but at a decreasing rate

Resulting options for net income after accounting for tuition and raise:

$$I_0^{net} = I_0 - Tu$$

$$I_1^{net} = I_1 + Ra$$

In thousands:

Classes	I_0	Tu	I_0^{net}	I_1	Ra	I_1^{net}
0	25	0	25	25	0	25
1	25	5	20	25	10	35
2	25	10	15	25	17	42
3	25	15	10	25	23	48
4	25	20	5	25	28	53
5	25	25	0	25	32	57

Can choose income bundle by adjusting number of classes

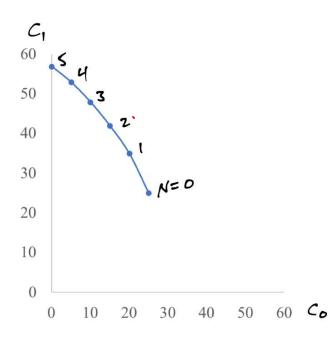
Which number of classes is best?

Initially, suppose can't borrow or save: must consume net income

$$C_0 = I_0^{net}$$

$$C_1 = I_1^{net}$$

Graphing the options:

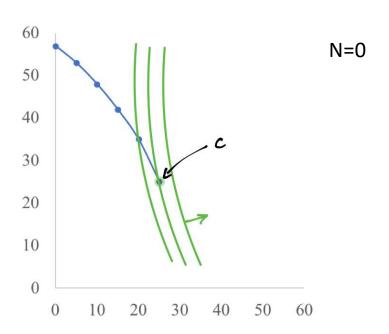


Known as a "human capital production function"

Feasible set of consumption bundles achievable by school alone.

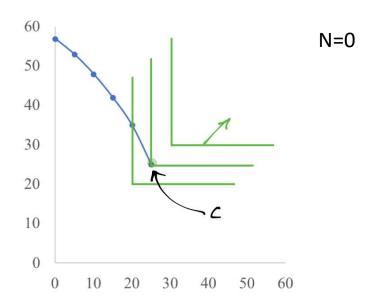
Now add ICs to find the option chosen:

Case 1: Very steep ICs

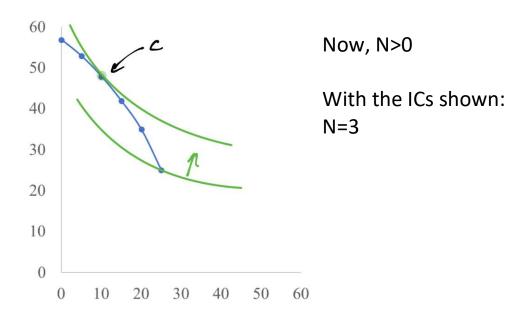


Case 2: Perfect complements

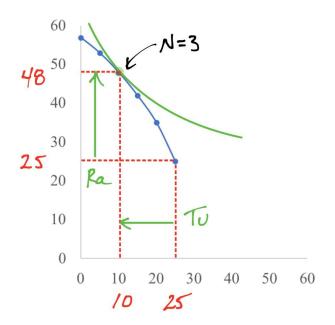
$$\frac{C_0}{C_1} = \frac{1}{1}$$



Case 3: ICs with more willingness to trade \mathcal{C}_0 for \mathcal{C}_1



Linking N, tuition (Tu) and the raise (Ra):



At N=3:

$$Tu = 15k$$
$$Ra = 23k$$

Key insight:

Without borrowing or saving many preferences lead to N=0 Examples: case 1 (impatient), case 2 (PC)

Now add option to borrow or save

Suppose r = 5%

Now have two decisions:

- 1. Number of classes to take
- 2. Amount to borrow or save

Can think them through in that order

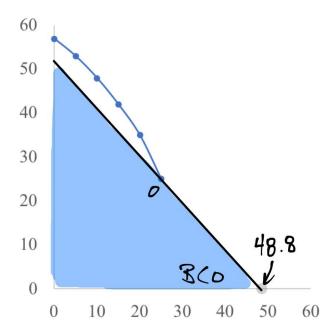
Suppose chooses N=0; what bundles are feasible?

Net income for N=0:

net

$$I_0^{net} = 25k$$
$$I_1^{net} = 25k$$

$$PVI = 25k + \frac{25k}{1.05} = 48.8k$$



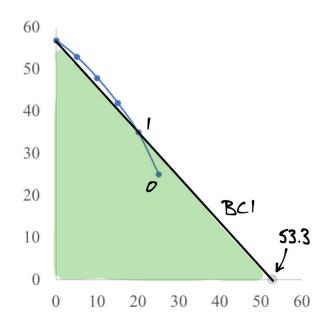
Suppose chooses N=1; what bundles are feasible?

Net income for N=1:

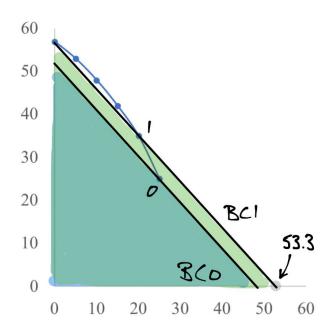
$$I_0^{net} = 25k - 5k = 20k$$

 $I_1^{net} = 25k + 10k = 35k$

$$PVI = 20k + \frac{35k}{1.05} = 53.3k$$



Overlaying the BC0 and BC1 sets:



Feasible set for BC1 contains:

- All bundles in BCO (darker color)
- Plus bundles with more C_0 , C_1 or both (lighter color)

Implication:

BC1 is better for all preferences

Technically, BC1 dominates BC0