Human Capital: Finding the Best Option

Finishing the example:
What's the best N ?

The N that pushes the BC furthest out:

Finding it is surprisingly easy:

It's the net income bundle with the largest PVI:

Computing the PVIs:
$\left.\begin{array}{|l|l|l|l|}\hline \text { Classes } & I_{0}^{\text {net }} & I_{1}^{\text {net }} & \\ \hline 0 & 25 & 25 & 25+\frac{25}{1.05}\end{array}\right) 48.8$

For all sets of preferences, $\mathrm{N}=3$ is best:

Gives the BC for choosing the consumption bundle C_{0} and C_{1} :

$$
C_{0}+\frac{C_{1}}{1.05}=55.7 k
$$

Human Capital: Adding Consumption Preferences

$B C$ with $N=3$:

$$
C_{0}+\frac{C_{1}}{1.05}=55.7 k
$$

Suppose person has PC preferences:

$$
\begin{aligned}
& \frac{C_{0}}{C_{1}}=\frac{1}{1} \\
& C_{0}=C_{1}
\end{aligned}
$$

Finding the optimal bundle:

$$
\begin{aligned}
& C_{0}+\frac{C_{0}}{1.05}=55.7 k \\
& C_{0}\left(1+\frac{1}{1.05}\right)=55.7 k \\
& C_{0}=28.5 k \\
& C_{1}=28.5 k
\end{aligned}
$$

Borrowing or saving?

$$
\begin{aligned}
& I_{0}^{n e t}=10 k \\
& C_{0}=28.5 k
\end{aligned}
$$

Borrows in period 0 :

$$
B=C_{0}-I_{0}^{\text {net }}=28.5 k-10 k=18.5 k
$$

Graphing:

Key observation:

Chooses $\mathrm{N}=0$ without access to borrowing Chooses $\mathrm{N}=3$ with access to borrowing

- Financial market separation:

Allows human capital decision (N) to be separated from the consumption decision

Applying PV to Policies Instead of Classes

Largest PV identifies largest feasible set for policies as well

Example with three options:

Policy	Details
BAU	Provides $\mathbf{\$ 1 0 0} \mathbf{k}$ in 0 and 1
Option A	Costs $\mathbf{\$ 1 0 k}$ in 0, provides additional $\mathbf{\$ 2 0}$ in 1
Option B	Costs \$25k in 0, provides additional \$30k

As a table of net payments:

Policy	Net in 0	Net in 1
BAU	$100 k$	100 k
A	$100 k-10 k=90 k$	$100 k+20 k=120 k$
B	$100 k-25 k=75 k$	$100 k+30 k=130 k$

Computing PVs at $r=10 \%$:

Policy	PV calculation	PV
BAU	$100 k+\frac{100 k}{1.1}$	$190.9 k$
A	$90 k+\frac{120 k}{1.1}$	$199.1 k$
B	$75 k+\frac{130 k}{1.1}$	$193.2 k$

These are gross or absolute payoffs:
Show what actually happens under each policy, including BAU

Often convenient to measure payoff relative to BAU
Show net payoffs and compute net present value

Net present value (NPV):

NPVs for the example:

Policy	Difference from BAU	NPV
A	$\$ 199.1 k-\$ 190.9 k$	$\$ 8.2 k$
B	$\$ 193.2 k-\$ 190.9 k$	$\$ 2.3 k$

Can compute NPVs directly from changes in payoffs:

Policy	Change in 0	Change in 1	PV of changes	NPV
A	-10k	+20k	$-10 k+\frac{20 k}{1.1}$	$8.2 k$
B	$-25 k$	$+30 k$	$-25 k+\frac{30 k}{1.1}$	$2.3 k$

Approaches are equivalent:

Difference in PVs

PV of differences

$$
N P V=P V(A)-P V(B A U)
$$

$\left(I_{0}^{A}+\frac{I_{1}^{A}}{1+r}\right)-\left(I_{0}^{B A U}+\frac{I_{1}^{B A U}}{1+r}\right) \quad\left(I_{0}^{A}-I_{0}^{B A U}\right)+\frac{\left(I_{1}^{A}-I_{1}^{B A U}\right)}{1+r}$

Can use whichever way is clearest and most convenient.

Bottom line:

Policy option with the highest PV (or highest NPV):

- Largest feasible set of C_{0} and C_{1} options
- Either or both periods can be made better off
- Pareto efficient

Extending PV to Multiple Periods

Fundamental intuition about PV:
The PV of a payment of F dollars at time T :
Amount you'd need to put in a bank at 0 in order to have F at T

Example:
Payment $\$ 1000$
Period 1
$r=10 \%$

Want balance at 1 to be $\$ 1000$:

$$
\begin{aligned}
& x(1+r)=1000 \\
& x=\frac{1000}{1.1}=909.09
\end{aligned}
$$

Generalizing to other possible payments and interest rates:

Want balance at 1 to be F_{1} :

$$
\begin{aligned}
& x(1+r)=F_{1} \\
& x=\frac{F_{1}}{1+r}
\end{aligned}
$$

Generalizing to more periods:

Period	Balance
0	x
1	$x(1+r)$
2	$[x(1+r)](1+r)=x(1+r)^{2}$
3	$x(1+r)^{3}$

Want balance at T to be F_{T} :

$$
\begin{aligned}
& x(1+r)^{T}=F_{T} \\
& x=\frac{F_{T}}{(1+r)^{T}}
\end{aligned}
$$

For clarity, rename x to $P V$:
$P V=\frac{F_{T}}{(1+r)^{T}}$
\triangle PV formula 1

Extending to streams of multiple payments:

Example:

\$100 in 1, 2 and 3
$r=10 \%$

PV

Could use 3 accounts:

$z=\frac{100}{1.1^{3}}=75.13$

Total deposit needed:

$$
\begin{aligned}
& P V=x+y+z \\
& P V=\frac{100}{1.1}+\frac{100}{1.1^{2}}+\frac{100}{1.1^{3}} \\
& P V=248.68
\end{aligned}
$$

Generalizing to any three payments F_{1}, F_{2}, and F_{3} :

$$
\begin{aligned}
& F_{0}^{F_{1}} F_{2} F_{3} \\
& P V \\
& P V=\frac{F_{1}}{(1+r)^{1}}+\frac{F_{2}}{(1+r)^{2}}+\frac{F_{3}}{(1+r)^{3}}
\end{aligned}
$$

Generalizing to any finite stream with payments from 0 to T :

PV
$P V=\frac{F_{0}}{(1+r)^{0}}+\frac{F_{1}}{1+r}+\frac{F_{2}}{(1+r)^{2}}+\frac{F_{3}}{(1+r)^{3}}+\cdots+\frac{F_{T}}{(1+r)^{T}}$

$$
P V=\sum_{t=0}^{T} \frac{F_{t}}{(1+r)^{t}}
$$

$\triangle \mathrm{PV}$ formula 2

Example application 1: WTP for a contract

Contract delivers $\$ 500$ in periods 1-3
$r=15 \%$

$P V=\frac{500}{1.15}+\frac{500}{1.15^{2}}+\frac{500}{1.15^{3}}=1142$
Don't pay more than $\$ 1142$ for contract: cheaper to get via a bank

Example application 2: PV of a construction project

Construction costs of $\$ 1 \mathrm{M}$ in 0,1 and 2
Finished project worth $\$ 5 \mathrm{M}$ in 3
$r=10 \%$

IM IM IM

$$
\begin{aligned}
& P V=-1 M+\frac{-1 M}{1.1^{1}}+\frac{-1 M}{1.1^{2}}+\frac{5 M}{1.1^{3}} \\
& P V=-2.736 M+3.757 M
\end{aligned}
$$

$P V=1.021 \mathrm{M}$

Daily exercise on Google Classroom

