
a060

Rough, practical definition:

Starts with a def statement1.
Includes subsequent indented lines2.

Is called (executed) by its name 3.

Accepts a list of arguments (inputs) [usually]4.
Returns a result (output) [usually]5.

A function is a named block of code that:

Schematically:

Example: summing up a list

Defining function sumup():

def sumup(values):
 total = 0
 for v in values:
 total = total + v
 return total

values: argument (input)

total: returned (output)

C: Functions

 Topics Page 1

Invoking (using) the function:

nums1 = [1, 2, 3, 4]
tot1 = sumup(nums1)
print(tot1)

calls function on nums1
prints 10

Benefits of functions:

Don't have to write the same code multiple times
Make repeat calculations easier:•

With sumup() Without sumup()
nums1 = [1,2,3,4]
nums2 = [9,8,7]

tot1 = sumup(nums1)
tot2 = sumup(nums2)

print(tot1,tot2)

nums1 = [1,2,3,4]
nums2 = [9,8,7]

tot1 = 0
for v in nums1:
 tot1 = tot1 + v
tot2 = 0
for v in nums1:

Make code shorter and logic cleaner and clearer:•

 Topics Page 2

for v in nums1:
 tot2 = tot2 + v

print(tot1,tot2)

One version to get right rather than several
Coder mantra: "Don't repeat yourself"

Make code more reliable: •

Defining a function with a default:

def sumup2(values, start=0):
 total = start
 for v in values:
 total = total + v
 return total

start is optional:
if not given, will default to 0

Can be omitted (default argument)1.
Can be given second with no name ("positional" argument)2.
Can be given by name ("keyword" argument)3.

In addition, start:

Using the function:

Optional arguments with default values:

vals = [10,20,30]
tot1 = sumup2(vals) tot1 ➡ 60 default

tot2 = sumup2(vals, 0) tot2 ➡ 60 positional

tot3 = sumup2(vals, start=0) tot3 ➡ 60 keyword

tot4 = sumup2(vals, 10) tot4 ➡ 70 positional

 Topics Page 3

tot5 = sumup2(vals, start=20) tot5 ➡ 80 keyword

def sumup3(values, start=0, power=1):
 total = start
 for v in values:
 total = total + v**power
 return total

vals = [10,20,30]
tot6 = sumup3(vals) tot6 ➡ 60
tot7 = sumup3(vals, power=2) tot7 ➡ 1400

Can use keyword arguments selectively:

Variable scoping:

What values do variables have inside and outside the function?

Functions have their own copies of variables•
Changes inside functions don't change variables outside•

Roughly speaking:

Example:

Define a function:

def fun(a):
 a = a + 2
 b = a**2 + c
 return b

 Topics Page 4

Using it:

a = 10
b = 20
c = 30
d = fun(5)
print([a, b, c, d])

What gets printed?

Outside Inside fun() How set?

a ➡ 10
b ➡ 20
c ➡ 30

Set outside
Set outside
Set outside

d = fun(5) a ➡ 5
a ➡ 5+2 ➡ 7
c ➡ 30
b ➡ 7**2 + 30 ➡ 79

Given as a parameter
Revised in function
Read from outside
Calculated in function

d ➡ 79 Returned by function

a ➡ 10
b ➡ 20
c ➡ 30

Unchanged
Unchanged
Unchanged

Printed result: [10,20,30,79]

Why important?

Functions can't accidentally clobber outside variables•
Can be written without knowing every possible context•

 Topics Page 5

Include all outside variables in the argument list•
Avoid using other external variables•

Note: best practice about passing variables to functions:

 Topics Page 6

