Introduction

Economics from 30,000 feet:

1. Applies to situations where people make *deliberate*, *systematic* choices using the *information* and resources available.

- 2. Examines how people respond to incentives.
- 3. Focuses on *problems* that arise from *incentives* and *constraints*, not because people are stupid or ignorant.

Leads to two key questions:

- Where do things go wrong even when people are informed and trying?
- How can we design policies to fix those problems?

Analysis done by constructing and analyzing mathematical models:

- Qualitative insights about underlying issues
- Quantitative results: who's affected and how much?

Asymmetric Information: Lemons

Based on pioneering work in the economics of information:

George Akerlof: "The Market for Lemons: Quality Uncertainty and the Market Mechanism"

Stripped down model:

4 cars, each has a state and a value

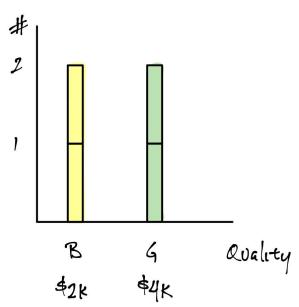
Possible states: Good (G) or bad (B)

Value of each: \$4000 if G, \$2000 if B

Cars on the market:

Car	State	Value	
1	G	\$4000	
2	G	\$4000	
3	В	\$2000	
4	В	\$2000	

Adding information asymmetry:


Sellers: Know true state of each car

Buyers: Only know the **distribution** of states

Buyer's view:

Probabilities:

- 50% chance a car is B
- 50% chance a car is G

Buyer's decision:

How much to offer for a given car?

What about average or expected value (EV)?

Define terms:

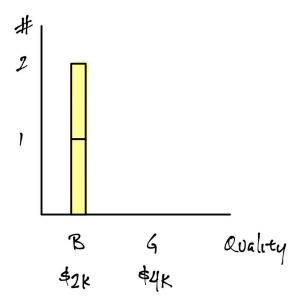
N	Number of possible states
ρ_i	Probability of state i
X_i	Payoff in state i

General formula for EV:

$$EV = \rho_1 X_1 + \rho_2 X_2 + \dots + \rho_N X_N$$

$$EV = \sum_{i=1}^{N} \rho_i X_i$$

Applying here:


$$EV = \left(\frac{1}{2}\right) * \$4000 + \left(\frac{1}{2}\right) * \$2000 = \$3000$$

Offer \$3000?

But, how would the seller react?

Car	State	Value	Offer	Impact on seller	Sell?
1	G	\$4000	\$3000	-\$1000	No
2	G	\$4000	\$3000	-\$1000	No
3	В	\$2000	\$3000	+\$1000	Yes
4	В	\$2000	\$3000	+\$1000	Yes

Equilibrium distribution of cars for sale:

- Good cars are driven out of the market
- Only B cars are left

Technically:

Asymmetric information leads to adverse selection

Buyer's offer after thinking through the reaction of sellers:

Chance of buying a G car = 0 Chance of buying a B car = 100%

$$EV = 0 * $4000 + 1 * $2000 = $2000$$

- Offers \$2000
- Only bad cars trade

Evaluating the outcome:

• Is it bad?

• What could be done to fix the underlying issue?

One type of solution is signaling:

- *Indirect* mechanism for conveying information
- Seller takes a costly, observable action to indicate quality

Example: certified used car programs

- Buyer can see if car is certified
- Buyer knows dealer won't want to certify bad cars
- Certification signals high quality

Signaling models were originally developed to understand job market:

• Why do employers care about grades in unrelated classes?