Two buyers:
A $\quad W T P_{A}=20-2 Q_{A}$
B $\quad W T P_{B}=20-Q_{B}$

Graphing person A's WTP:

$10 \quad Q_{A}$

Intercepts:

$$
\begin{array}{cll}
\text { Axis } & \text { Rule } & \text { Solving } \\
\mathrm{Y} & Q_{A}=0 & W T P_{A}=20-2 * 0 \\
& & W T P_{A}=20 \\
& & \\
\mathrm{X} & W T P_{A}=0 & 0=20-2 Q_{A} \\
& & Q_{A}=10
\end{array}
$$

For each price P , how much will person A buy, Q_{A}^{*} ?

Recall decision rules:
Buy if WTP $_{A} \geq P$
Don't buy if $\mathrm{WTP}_{\mathrm{A}}<\mathrm{P}$
Result: Q_{A}^{*} is where WTP crosses P:

$$
W T P_{A}\left(Q_{A}^{*}\right)=P
$$

Γ

Can use to derive A's demand equation $Q_{A}^{D}(P)$

WTP equation: $W T P_{A}=20-2 Q_{A}$
Decision rule: $\quad W T P_{A}=P$

Eliminating $W T P_{A}$ by substitution:

$$
P=20-2 Q_{A}
$$

Solving for Q_{A} :

$$
\begin{aligned}
& P=20-2 Q_{A} \\
& P-20=-2 Q_{A} \\
& \frac{P-20}{-2}=Q_{A} \\
& Q_{A}=10-\frac{1}{2} P
\end{aligned}
$$

Thus A's demand is:

$$
Q_{A}^{D}=10-\frac{1}{2} P
$$

$W T P_{B}=20-Q_{B}$

WTP equation: $W T P_{B}=20-Q_{B}$
Decision rule: $\quad W T P_{B}=P$

Solving for Q_{B} :

$$
\begin{aligned}
& P=20-Q_{B} \\
& Q_{B}=20-P
\end{aligned}
$$

Thus B's demand is:

$$
Q_{B}^{D}=20-P
$$

Practice deriving demand from WTP:
Economic Skills Project exercise MD-101
https://wilcoxen.maxwell.insightworks.com/esp/md101/

Finding the market demand:

$$
\begin{aligned}
Q_{M}^{D} & =\sum_{i}^{N} Q_{i}^{D} \\
Q_{M}^{D} & =Q_{A}^{D}+Q_{B}^{D} \\
Q_{M}^{D} & =\left(10-\frac{1}{2} P\right)+(20-P) \\
Q_{M}^{D} & =30-\frac{3}{2} P
\end{aligned}
$$

Graphing:

> Intercepts:
Axis Rule
X $\quad P=0$

Solving
$Q_{M}^{D}=30-0$
$Q_{M}^{D}=30$
\$

$$
\begin{array}{ll}
\mathrm{Y} \quad Q_{M}^{D}=0 & 0=30-1.5 P \\
& P=20
\end{array}
$$

Practice deriving market demand:
Economic Skills Project exercise MD-151
https://wilcoxen.maxwell.insightworks.com/esp/md151/

Daily exercise

