Can reverse process to get $W T P_{M}$:
Demand: $Q_{M}^{D}=30-\frac{3}{2} P$
Decision rule for last $\mathrm{Q}: W T P_{M}=P$

Substituting and rearranging:

$$
\begin{aligned}
& \mathrm{Q}_{M}^{\mathrm{D}}=30-\frac{3}{2} \mathrm{P} \\
& Q_{M}^{D}=30-\frac{3}{2} W T P_{M} \\
& \frac{Q_{M}^{D}-30}{-\frac{3}{2}}=W T P_{M} \\
& -\frac{2}{3} Q_{M}^{D}+\frac{2}{3} 30=W T P_{M} \\
& W T P_{M}=20-\frac{2}{3} Q_{M}^{D}
\end{aligned}
$$

Gives the WTP that goes with any particular unit:

Example: WTP for unit 15 ?
$W T P_{M}=20-\frac{2}{3} * 15=\$ 10$

Adding Supply

Two sellers:
E $\quad W T A_{E}=2 Q_{E}^{S}$
F $\quad W T A_{F}=Q_{F}^{S}$

Graphing:

For each P, how much will seller E offer, Q_{E}^{S} ?
Decision rules:
Sell if $P \geq W T A_{E}$
Don't sell if $P<W T A_{E}$
Result: Q_{E}^{*} is where WTA crosses P:
$W T A_{E}\left(Q_{E}^{*}\right)=P$

Use to derive E's supply equation $Q_{E}^{S}(P)$
WTA equation: $\quad W T A_{E}=2 Q_{E}^{S}$
Decision rule: $\quad W T A_{E}=P$

Eliminating $W T A_{E}$:

$$
P=2 Q_{E}^{S}
$$

$$
Q_{E}^{S}=\frac{1}{2} P
$$

Seller F's supply:

$$
\begin{aligned}
& W T A_{F}=Q_{F}^{S} \\
& W T A_{F}=P
\end{aligned}
$$

Solving:

$$
P=Q_{F}^{S}
$$

$$
Q_{F}^{S}=P
$$

Finding the market supply:

$$
\begin{aligned}
& Q_{M}^{S}=\sum_{i}^{N} Q_{i}^{S} \\
& Q_{M}^{S}=Q_{E}^{S}+Q_{F}^{S} \\
& Q_{M}^{S}=\left(\frac{1}{2} P\right)+(P) \\
& Q_{M}^{S}=\frac{3}{2} P
\end{aligned}
$$

Graphing:

Reversing to find $W T A_{M}$:

$$
\begin{aligned}
& Q_{M}^{S}=\frac{3}{2} P \\
& W T A_{M}=P \\
& Q_{S}^{M}=\frac{3}{2} W T A_{M} \\
& W T A_{M}=\frac{2}{3} Q_{M}^{S}
\end{aligned}
$$

Gives the WTA for any given Q:

Example: WTA for unit $15 ?$

$\mathrm{WT} A_{M}=\frac{2}{3} * 15=\$ 10$

Finding the Equilibrium

Market demand and supply equations:

$$
\begin{aligned}
& Q_{M}^{D}=30-\frac{3}{2} P \\
& Q_{M}^{S}=\frac{3}{2} P
\end{aligned}
$$

Graphing:

Finding P^{*} and Q^{*} :
Two possible approaches:

1. $Q_{M}^{D}\left(P^{*}\right)=Q_{M}^{S}\left(P^{*}\right) \quad$ Demand equals supply
2. $W T P_{M}\left(Q^{*}\right)=W T A_{M}\left(Q^{*}\right)$ WTP equals WTA

Here, first is easiest since we have Q_{M}^{D} and Q_{M}^{S}.

Three equations and three unknowns:

$$
\begin{aligned}
Q_{M}^{D} & =Q_{M}^{S} \\
Q_{M}^{D} & =30-\frac{3}{2} P \\
Q_{M}^{S} & =\frac{3}{2} P
\end{aligned}
$$

Substituting and simplifying:

$$
\begin{aligned}
& 30-\frac{3}{2} P=\frac{3}{2} P \\
& 30=3 P \\
& P=10 \text { (equilibrium price) }
\end{aligned}
$$

Finding Q:

$$
Q_{M}^{D}=30-\frac{3}{2} P=30-\frac{3}{2} * 10=15
$$

Checking:

$$
Q_{M}^{S}=\frac{3}{2} * P=\frac{3}{2} * 10=15\left(\text { same as } Q_{M}^{D}, \text { passes check }\right)
$$

Equilibrium:

$$
P^{*}=\$ 10, Q^{*}=15
$$

Determine Q's using individual demands and supplies
Evaluate each at $P=P^{*}=10$

Buyers:
A

$$
Q_{A}^{D}=10-0.5 P \quad Q_{A}^{D}=5
$$

B

$$
Q_{B}^{D}=20-P
$$

$$
Q_{B}^{D}=10
$$

Total
15

Sellers:
E

$$
Q_{E}^{S}=0.5 P
$$

$$
Q_{E}^{S}=5
$$

F
$Q_{F}^{S}=P$
$Q_{F}^{S}=10$
Total
15
Note: it's a coincidence that $Q_{A}^{D}=Q_{E}^{S}$ and $Q_{B}^{D}=Q_{F}^{S}$

Now compute welfare impacts: CS and PS

With algebraic equations CS and PS are computed using areas:

- CS is the area below WTP and above P (adds up WTP - P)
- PS is the area below P and above WTA (adds up P - WTA)

Implementing here:

$$
\begin{array}{lll}
C S_{A}=\frac{1}{2}(5)(20-10) & C S_{B}=\frac{1}{2}(10)(20-10) & C S_{M}=\frac{1}{2}(15)(20-10) \\
C S_{A}=\$ 25 & C S_{B}=\$ 50 & C S_{M}=\$ 75
\end{array}
$$

$$
\begin{array}{lll}
P S_{E}=\frac{1}{2}(5)(10-0) & P S_{F}=\frac{1}{2}(10)(10-0) & P S_{M}=\frac{1}{2}(15)(10-0) \\
P S_{E}=\$ 25 & P S_{F}=\$ 50 & P S_{M}=\$ 75
\end{array}
$$

Total gain:

$$
\begin{aligned}
& \mathrm{SS}=\mathrm{CS}+\mathrm{PS} \\
& \mathrm{SS}=\$ 75+\$ 75=\$ 150
\end{aligned}
$$

