Additional Note about Demand

Can reverse process to get WTP_M :

Demand: $Q_M^D = 30 - \frac{3}{2}P$

Decision rule for last Q: $WTP_M = P$

Substituting and rearranging:

$$Q_{M}^{D} = 30 - \frac{3}{2}P$$

$$Q_M^D = 30 - \frac{3}{2}WTP_M$$

$$\frac{Q_M^D - 30}{-\frac{3}{2}} = WTP_M$$

$$-\frac{2}{3} Q_M^D + \frac{2}{3} 30 = WTP_M$$

$$WTP_M = 20 - \frac{2}{3}Q_M^D$$

Gives the WTP that goes with any particular unit:

Example: WTP for unit 15?

$$WTP_M = 20 - \frac{2}{3} * 15 = $10$$

Two sellers:

$$E WTA_E = 2Q_E^S$$

$$F WTA_F = Q_F^S$$

Graphing:

For each P, how much will seller E offer, Q_E^S ?

Decision rules:

Sell if $P \ge WTA_E$ Don't sell if $P < WTA_E$

Result: Q_E^* is where WTA crosses P:

$$WTA_E(Q_E^*) = P$$

Use to derive E's supply equation $Q_E^S(P)$

WTA equation: $WTA_E = 2Q_E^S$

Decision rule: $WTA_E = P$

Eliminating WTA_E :

$$P=2Q_E^S$$

$$Q_E^S = \frac{1}{2}P$$

Seller F's supply:

$$WTA_F = Q_F^S$$

$$WTA_F = P$$

Solving:

$$P = Q_F^S$$

$$Q_F^S = P$$

$$Q_F^S = P$$

Finding the market supply:

$$Q_M^S = \sum_i^N Q_i^S$$

$$Q_M^S = Q_E^S + Q_F^S$$

$$Q_M^S = \left(\frac{1}{2}P\right) + (P)$$

$$Q_M^S = \frac{3}{2}P$$

Graphing:

Reversing to find WTA_M :

$$Q_M^S = \frac{3}{2}P$$

$$WTA_M = P$$

$$Q_S^M = \frac{3}{2}WTA_M$$

$$WTA_M = \frac{2}{3}Q_M^S$$

Gives the WTA for any given Q:

Example: WTA for unit 15?

$$WTA_M = \frac{2}{3} * 15 = \$10$$

Finding the Equilibrium

Market demand and supply equations:

$$Q_M^D = 30 - \frac{3}{2}P$$

$$Q_M^S = \frac{3}{2}P$$

Graphing:

Finding P^* and Q^* :

Two possible approaches:

1. $Q_M^D(P^*) = Q_M^S(P^*)$

Demand equals supply

2. $WTP_M(Q^*) = WTA_M(Q^*)$ WTP equals WTA

Here, first is easiest since we have Q_M^D and Q_M^S .

Three equations and three unknowns:

$$Q_M^D = Q_M^S$$

$$Q_M^D = 30 - \frac{3}{2}P$$

$$Q_M^S = \frac{3}{2}P$$

Substituting and simplifying:

$$30 - \frac{3}{2}P = \frac{3}{2}P$$

$$30 = 3P$$

$$P = \frac{10}{10}$$
 (equilibrium price)

Finding Q:

$$Q_M^D = 30 - \frac{3}{2}P = 30 - \frac{3}{2} * 10 = 15$$

Checking:

$$Q_M^S = \frac{3}{2} * P = \frac{3}{2} * 10 = \frac{15}{15}$$
 (same as Q_M^D , passes check)

Equilibrium:

$$P^* = \$10, Q^* = 15$$

Determine Q's using individual demands and supplies

Evaluate each at $P = P^* = 10$

Buyers:

$$Q_A^D = 10 - 0.5P$$
 $Q_A^D = 5$
 $Q_B^D = 20 - P$ $Q_B^D = 10$

$$Q_A^D = 5$$

$$Q_B^D = 20 - F$$

$$Q_{B}^{D} = 10$$

Total

Sellers:

$$Q_E^S = 0.5P$$

$$Q_E^S = 5$$

$$Q_F^S = P$$

$$Q_F^S = \frac{10}{10}$$

Total

Note: it's a coincidence that $Q_A^D = Q_E^S$ and $Q_B^D = Q_F^S$

Now compute welfare impacts: CS and PS

With algebraic equations CS and PS are computed using areas:

- CS is the area below WTP and above P (adds up WTP P)
- PS is the area below P and above WTA (adds up P WTA)

Implementing here:

$$CS_A = \frac{1}{2}(5)(20 - 10)$$
 $CS_B = \frac{1}{2}(10)(20 - 10)$ $CS_M = \frac{1}{2}(15)(20 - 10)$ $CS_A = \$25$ $CS_B = \$50$ $CS_M = \$75$

$$CS_B = \frac{1}{2}(10)(20 - 10)$$

$$CS_M = \frac{1}{2}$$

$$PS_E = \frac{1}{2}(5)(10 - 0)$$

$$PS_E = \$25$$

$$PS_F = \frac{1}{2}(10)(10 - 0)$$

$$PS_F = \$50$$

$$PS_E = \frac{1}{2}(5)(10 - 0)$$
 $PS_F = \frac{1}{2}(10)(10 - 0)$ $PS_M = \frac{1}{2}(15)(10 - 0)$
 $PS_E = \$25$ $PS_F = \$50$ $PS_M = \$75$

Total gain: