Applying PV to Policies Instead of Classes

Largest PV identifies largest feasible set for policies as well

Example with three options:

Policy	Details
BAU	Provides \$100k in 0 and \$100k in 1
Option A	Costs \$10k in 0 relative to BAU, provides additional \$20k in 1
Option B	Costs \$25k in 0 relative to BAU, provides additional \$30k in 1

As a table of net payments:

Policy	Net in 0	Net in 1
BAU	100 <i>k</i>	100k
A	100k - 10k = 90k	100k + 20k = 120k
В	100k - 25k = 75k	100k + 30k = 130k

Computing PVs at r = 10%:

Policy	PV calculation	PV	Ranking
BAU	$100k + \frac{100k}{1.1}$	190.9 <i>k</i>	
A	$90k + \frac{120k}{1.1}$	199. 1 <i>k</i>	Best
В	$75k + \frac{130k}{1.1}$	193.2 <i>k</i>	Better

These are *gross* or *absolute* payoffs:

• Show what *actually happens* under each policy, including BAU

Often convenient to measure payoff *relative to BAU*

- Show changes from BAU as **net** payoffs
- Use to compute net present value (NPV)

Net present value:

NPVs for the example:

Policy	Policy PV	BAU PV	NPV	Ranking
BAU	190.9 <i>k</i>	190.9 <i>k</i>	0	
А	199.1 <i>k</i>	190.9 <i>k</i>	8.2 <i>k</i>	Best
В	193.2 <i>k</i>	190.9 <i>k</i>	2.3 <i>k</i>	Better

Can compute NPVs directly from changes in payoffs:

Policy	Change in 0	Change in 1	PV of changes	NPV
A	-10k	+20 <i>k</i>	$-10k + \frac{20k}{1.1}$	8.2 <i>k</i>
В	-25 <i>k</i>	+30 <i>k</i>	$-25k + \frac{30k}{1.1}$	2.3 <i>k</i>

Approaches are always equivalent:

Difference in PVs

PV of differences

$$NPV = PV(A) - PV(BAU) \qquad NPV = PV(A - BAU)$$
$$\left(I_0^A + \frac{I_1^A}{1+r}\right) - \left(I_0^{BAU} + \frac{I_1^{BAU}}{1+r}\right) \qquad (I_0^A - I_0^{BAU}) + \frac{(I_1^A - I_1^{BAU})}{1+r}$$

Can use whichever way is clearest and most convenient.

Bottom line:

Policy option with the highest PV or highest NPV:

- Largest feasible set of C_0 and C_1 options
- Either or both periods can be made better off
- Pareto efficient

Extending PV to Multiple Periods

Fundamental intuition about PV:

PV of payment *F* at time *T*:

Size of bank deposit *needed at 0* to *have F at T*

Example:

Payment \$1000 Period 1 r = 10%

Want balance at 1 to be \$1000:

$$x(1+r) = 1000$$
$$x = \frac{1000}{1.1} = 909.09$$

Generalizing to other possible payments and interest rates:

Want balance at 1 to be F_1 :

$$x(1+r) = F_1$$
$$x = \frac{F_1}{1+r}$$

Generalizing to more periods:

Period	Balance
0	x
1	x(1+r)
2	$[x(1+r)](1+r) = x(1+r)^2$
3	$x(1+r)^3$

Т	$x(1+r)^{T}$

Want balance at T to be F_T :

$$x(1+r)^T = F_T$$
$$x = \frac{F_T}{(1+r)^T}$$

For clarity, rename x to PV:

$$PV = \frac{F_T}{(1+r)^T}$$

A PV formula 1

Extending to streams of multiple payments:

Example:

Want \$100 in 1, 2 and 3
$$r=10\%$$

Could use 3 accounts:

Total deposit needed:

$$PV = x + y + z$$
$$PV = \frac{100}{1.1} + \frac{100}{1.1^2} + \frac{100}{1.1^3}$$
$$PV = 248.68$$

Generalizing to any three payments F_1 , F_2 , and F_3 :

Generalizing to any finite stream with payments from 0 to
$$T$$
:

$$PV = \frac{F_0}{(1+r)^0} + \frac{F_1}{1+r} + \frac{F_2}{(1+r)^2} + \frac{F_3}{(1+r)^3} + \dots + \frac{F_T}{(1+r)^T}$$

$$PV = \sum_{t=0}^{T} \frac{F_t}{(1+r)^t}$$

$$F_t$$
 $\triangle PV$ formula 2

Example application 1: WTP for a contract

Contract delivers \$500 in periods 1-3 r = 15%

$$PV = \frac{500}{1.15} + \frac{500}{1.15^2} + \frac{500}{1.15^3} = 1142$$

Don't pay more than \$1142 for contract: cheaper to get via a bank

Example application 2: PV of a construction project

Construction costs of \$1M in 0, 1 and 2 Finished project worth \$5M in 3 r = 10%

$$PV = -1M + \frac{-1M}{1.1^1} + \frac{-1M}{1.1^2} + \frac{5M}{1.1^3}$$
$$PV = -2.736 M + 3.757 M$$

PV = 1.021 M

Daily exercise on Google Classroom