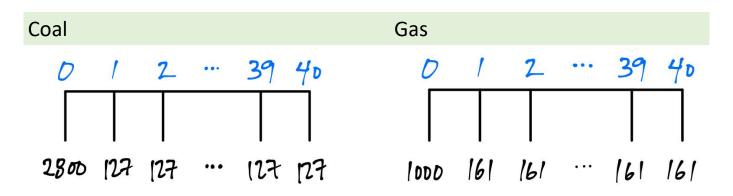
Example: Lifecycle Cost of Power Plants

Building a 1 GW power plant around 2011 (earlier fuel prices)

Two options: coal or gas Expected life: **1-40** Two types of cost: construction (once) and fuel (annual) r = 5%

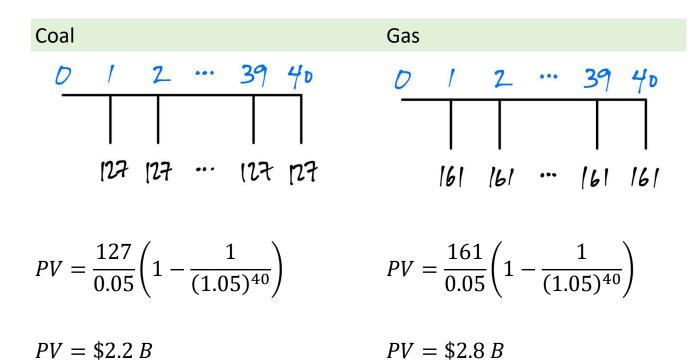

Cost	Coal	Gas
Construction, year 0	\$2.8 B	\$1.0 B
Annual fuel, years 1-40	\$127 M	\$161 M

What's the PV cost over the life cycle of each plant?

• Known as the total cost of ownership (TCO)

Analysis:

Cash flow, in M\$:

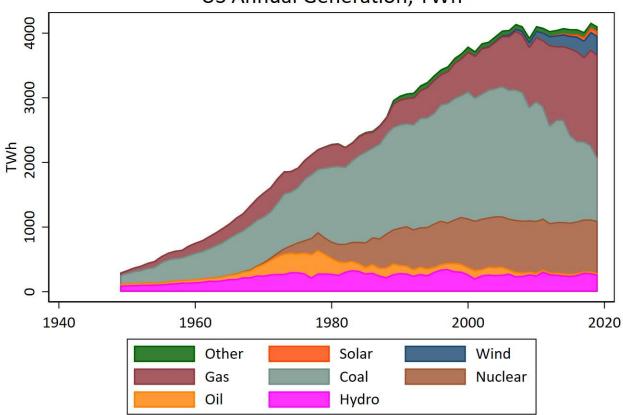


Splitting into construction and fuel:

Construction, M\$:

Coal	Gas		
D	D		
2800	1000		
PV = \$2.8 B	PV = \$1 B		

Fuel, M\$:



Combining costs:

Cost	Coal	Gas
Construction	\$2.8 B	\$1.0 B
Fuel	\$2.2 B	\$2.8 B
Total	\$5.0 B	\$3.8 B

- Gas was far cheaper even with the fuel cost premium
- Industry stopped building coal plants more than a decade ago

FYI: gas and renewables have rapidly replaced coal generation

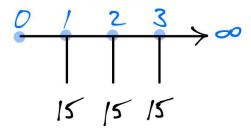
US Annual Generation, TWh

Example: Climate Change Policy

Net PV of an energy tax to reduce CO2 emissions

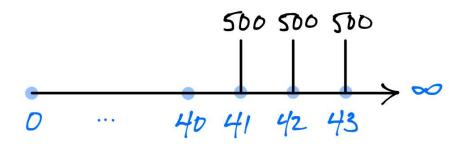
Tax details from CD case in Exercise 7: Implemented in year 1 and continued indefinitely CV = \$135 B/year Revenue = \$120 B/year

Avoided damages: Begin in year 41 and continue indefinitely \$500 B/year


NPV at *r* = 4%, 5%, and 6%?

Analysis:

Net welfare cost per year:


 $Tax \Delta SS = -\$135 B + \$120 B = -\$15 B$

Cost cash flow:

$$PV_C = \frac{\$15 B}{r}$$

Benefit cash flow:

Year 40 lump sum equivalent:

$$PV_{40} = \frac{\$500 B}{r}$$

PV in year 0:

$$PV_B = \frac{PV_{40}}{(1+r)^{40}}$$

Net PV:

$$NPV = PV_B - PV_C$$

Use Excel to calculate the three cases

Quick preview of spreadsheet:

Global Warming Example

Annual CV of the Energy Tax Annual Revenue from the Tax Annual Damage from Warming (billion Years Until Damage Begins	\$ \$ \$ \$	135 120 500 40	b	v ev enefit elay			
Annual Net Cost of the Tax	\$	15	C	ost = cv -	· rev	1	
	Interest Rate						
		4%		5%		6%	
PV of costs in year 0	\$	375	\$	300	\$	250	pvc = cost/r
PV of benefits in year 40	\$	12,500	\$	10,000	\$	8,333	Irb = benefit/r
PV of benefits in year 0	\$	2,604	\$	1,420	\$	810	pvb = lrb/(1+r)^delay
NPV of benefits - costs in year 0	\$	2,229	\$	1,120	\$	560	net = pvb - pvc

Tips for using Excel effectively:

- Name cells
- Make input cells distinct
- Include visible versions of formulas
- Format for printing
- Use white space
- Break calculations into steps

Intertemporal Choice Page 4

Example: Sewer Upgrade

Upgrade combined sewer system to avoid overflows

Construction cost: \$50 M paid at 0

Benefit:

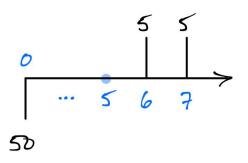
Saves **\$5 M/year** in fines and damage from **year 6 on forever**

Finance by issuing a bond:

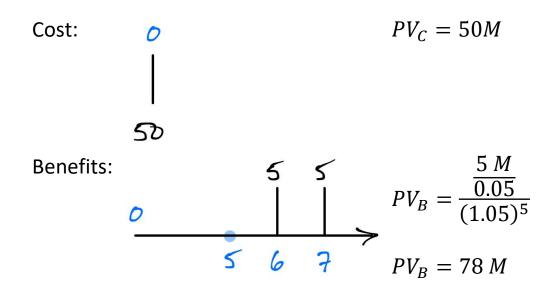
- 1. Investors would buy bond from the city for **\$50 M in 0**
- 2. City would make coupon payments of **\$3 M/year in 1-20**
- 3. City would repay the **\$50 M principal in year 20**

Evaluation:

Does the overall project have a positive NPV? City uses r = 5% in NPV calculations


Analysis:

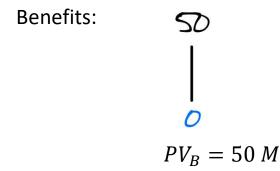
Two logically separate components:

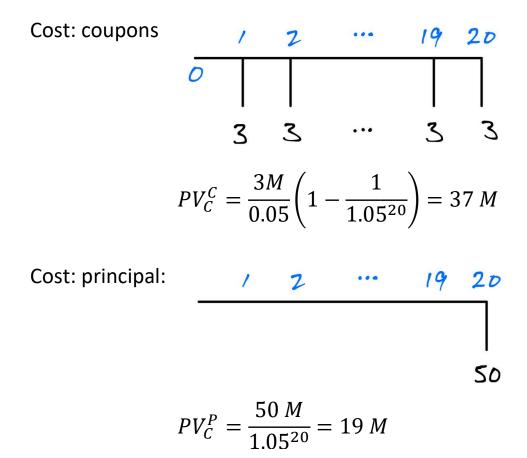

- 1. Physical upgrade: construction, avoided fines and damage
- 2. Bond: cash in at 0, payments out in 1-20

Analyze individually

Physical upgrade:

NPV of the physical upgrade?




NPV of upgrade:

$$NPV_{up} = PV_B - PV_C$$
$$NPV_{up} = $78 M - $50 M$$
$$NPV_{up} = $28 M$$

Bond:

NPV of the bond?

NPV of bond:

$$NPV_{bond} = PV_B - PV_C^C - PV_C^P$$
$$NPV_{bond} = \$50 M - \$37 M - \$19 M$$
$$NPV_{bond} = -\$6 M$$

Overall project:

 $NPV_{total} = NPV_{up} + NPV_{bond}$ $NPV_{total} = $28M - $6M$ $NPV_{total} = $22M$

Positive NPV:

- Gains are more than enough to compensate losers
- Project is efficient: a potential Pareto improvement