Production

Two fundamental activities:

1. Cost minimization

For each possible output Q find the cheapest way to produce it

Deeply similar to household choice Choosing inputs subject to a constraint

Produces a menu of options:

Q	Total cost
1	\$100
2	\$190
3	\$270

2. Output decision

Choose output given costs, market conditions, and producer's goals Which option from the menu of possible Qs?

Cost Minimization

Mirror image of the individual choice model

Deeply analogous, but with slight changes

Same four conceptual components:

 Set of options available What is the choice over? Now: bundles of inputs or factors of production

2. Feasibility

What can the decision maker actually do? Now: must choose bundle **sufficient to make target Q**

1. Ranking

How does the decision maker feel about the options? Now: wants **minimize cost**

2. Choice

What does the decision maker choose? Now: cost-minimizing input bundle

Example: custom sailboat hulls

1. Options available

Inputs:

Labor time, building space, tools, molds, resin, fiberglass, ...

```
Simplify to two:
Labor (L) and capital (K)
```

Input bundles are points in the L, K plane:

2. Feasibility

Which bundles are enough to produce a target Q?

Depends on process used to make the product Summarize using a *production function*:

Q(L,K)

Suppose for sailboats the function is:

 $Q = \frac{1}{18} K^{0.5} L^{0.5}$ Example of a Cobb-Douglas production function

Translating example bundles of inputs to output:

Bundle L K Q

а	9	36	$\frac{9^{0.5} * 36^{0.5}}{18} = 1$
b	18	18	$\frac{18^{0.5} * 18^{0.5}}{18} = 1$
С	36	9	$\frac{36^{0.5} * 9^{0.5}}{18} = 1$
d	18	72	$\frac{18^{0.5} * 72^{0.5}}{18} = 2$
е	36	36	$\frac{36^{0.5} * 36^{0.5}}{18} = 2$

Bundles that produce the same output are *isoquants*:

Look like ICs but actually define feasible sets:

Must be on or above isoquant to produce Q=1

3. Ranking

What do the bundles cost?

Accounting equation for total cost (TC) is sum of spending on each input:

 $TC = P_K K + P_L L$

Can graph bundles adding up to any given total cost

Sailboat example:

Suppose prices are $P_L = 10$ and $P_K = 40$

Which bundles have TC =\$1000?

 $TC = P_K K + P_L L$

$$1000 = 40 * K + 10 * L$$

Adding isocost for bundles where TC = \$800

 $TC = P_{K}K + P_{L}L$ \$800 = \$40 * K + \$10 * L K $K \text{ intercept:} \\\$00/40=20$ $L \text{ intercept:} \\\$00/10=80$

Isocosts look like BCs but actually show preferences:

4. Choice

Overlay isocost (preferences) on isoquant (constraint):

Comparing costs of feasible bundles:

Minimum cost bundle is on innermost TC curve:

Optimum input bundle is **exactly analogous** to individual choice:

Other feasible bundles are worse (expensive)

Better bundles (cheaper) are not feasible

Like individual choice, can derive **demand equations** for inputs:

Household	Production
$Q_X(M, P_X, P_Y)$	$L(Q, P_L, P_K)$
$Q_Y(M, P_X, P_Y)$	$K(Q, P_K, P_L)$

Here: called input or factor demands

For this production function, can show factor demands are:

$$K = 18Q \left(\frac{P_L}{P_K}\right)^{0.5}$$

$$L = 18Q \left(\frac{P_K}{P_L}\right)^{0.5}$$

Factor demands are the solution to the cost minimization problem: Show least cost mix of inputs for any Q Example applications:

Case 2

Target: Q=2 Prices: Same as above

$$K = 18 * \frac{2}{2} * \left(\frac{10}{40}\right)^{0.5} = 18$$

$$L = 18 * \frac{2}{2} * \left(\frac{40}{10}\right)^{0.5} = 72$$

$$TC = 1440$$

Case 3

Target: Q=1

Prices: Higher $P_L = \frac{40}{5}$, same $P_K = 40$

$$K = 18 * 1 * \left(\frac{40}{40}\right)^{0.5} = 18$$

$$L = 18 * 1 * \left(\frac{40}{40}\right)^{0.5} = 18$$

$$TC = 40 * 18 + 40 * 18 = 1440$$

For other production functions: Similar procedure but different factor demands