
I

Initial data

Action	State	Probability	Gross Payoff
С	Н	75%	\$220,000
С	L	25%	\$180,000
N	Н	40%	\$700,000
Ν	L	60%	\$100,000

Net payoffs and utilities of each endpoint:

Action	State	Probability	Net Payoff	Utility
С	Н	75%	\$120,000	346
С	L	25%	\$80,000	283
N	Н	40%	\$600,000	775
Ν	L	60%	\$0	0

Computing the expected utilities:

 $EU_C = 0.75*346 + 0.25*283 = 330$ $EU_N = 0.40*775 + 0.60*0 = 310$

The manager would choose C

Computing the expected values:

 $EV_C = 0.75 \pm 120,000 \pm 0.25 \pm 80,000 = \pm 110,000$ $EV_N = 0.40 \pm 600,000 \pm 0.60 \pm 50 = \pm 240,000$

A risk-neutral manager would strongly prefer N