Now have market demand and supply:

Demand	Supply
$Q_{M}^{D}(P)$	$Q_{M}^{S}(P)$

Give Q^{D} and Q^{S} for every possible price P

Can use to find equilibrium price P^{*} where Qs are equal:
Solve for P^{*} that makes $Q_{M}^{D}\left(P^{*}\right)=Q_{M}^{S}\left(P^{*}\right)$
Corresponding Q is the equilibrium quantity Q^{*} :

$$
Q_{M}^{D}\left(P^{*}\right)=Q_{M}^{S}\left(P^{*}\right)=Q^{*}
$$

Graphically, the equilibrium is where the curves cross:

Equilibrium:

- P is stable: no forces pushing it up or down
- All other prices are not stable:

Case 1: P_{1} below P^{*}

Buyers want more: $Q_{M}^{D}\left(P_{1}\right)>Q^{*}$
Sellers sell less: $\quad Q_{M}^{S}\left(P_{1}\right)<Q^{*}$

$$
Q_{M}^{D}\left(P_{1}\right)>Q_{M}^{S}\left(P_{1}\right)
$$

- Excess demand
- Price will tend to rise

Case 2: P_{2} above P^{*}

Buyers want less: $Q_{M}^{D}\left(P_{2}\right)<Q^{*}$
Sellers sell more: $Q_{M}^{S}\left(P_{2}\right)>Q^{*}$
$Q_{M}^{D}\left(P_{2}\right)<Q_{M}^{S}\left(P_{2}\right)$

- Excess supply
- Price will tend to fall

Finding P^{*} and Q^{*} algebraically:

Can solve either equation:
(I) Use demand = supply and solve for P^{*} first:

Solve for $P^{*}: Q_{M}^{D}\left(P^{*}\right)=Q_{M}^{S}\left(P^{*}\right)$
Solve for $Q^{*}: Q^{*}=Q_{M}^{D}\left(P^{*}\right)$ or $Q^{*}=Q_{M}^{S}\left(P^{*}\right)$
OR, (II) use WTP = WTA and solve for Q^{*} first:

Solve for $Q^{*}: W T P_{M}\left(Q^{*}\right)=W T A_{M}\left(Q^{*}\right)$
Solve for $P^{*}: P^{*}=W T P\left(Q^{*}\right)$ or $P^{*}=W T A\left(Q^{*}\right)$

