Market Equilibrium

Now have market demand and supply:

Demand	Supply
$Q_M^D(P)$	$Q_M^S(P)$

Give Q^D and Q^S for every possible price P

Can use to find *equilibrium price* P^* where Qs are equal:

Solve for P^* that makes $Q_M^D(P^*) = Q_M^S(P^*)$

Corresponding Q is the *equilibrium quantity* Q*:

$$Q_M^D(P^*) = Q_M^S(P^*) = Q^*$$

Graphically, the equilibrium is where the curves cross:

Equilibrium:

- P is stable: no forces pushing it up or down
- All other prices are **not** stable:

Case 1: P_1 below P^*

Buyers want more: $Q_M^D(P_1) > Q^*$ Sellers sell less: $Q_M^S(P_1) < Q^*$

$$Q_M^D(P_1) > Q_M^S(P_1)$$

- Excess demand
- Price will tend to rise

Case 2: P_2 above P^*

Buyers want less: $Q_M^D(P_2) < Q^*$ Sellers sell more: $Q_M^S(P_2) > Q^*$

 $Q^D_M(P_2) < Q^S_M(P_2)$

- Excess supply
- Price will tend to fall

Finding P^* and Q^* algebraically:

Can solve either equation:

(I) Use demand = supply and solve for P^* first:

Solve for
$$P^*$$
: $Q^D_M(P^*) = Q^S_M(P^*)$
Solve for Q^* : $Q^* = Q^D_M(P^*)$ or $Q^* = Q^S_M(P^*)$

OR, (II) use WTP = WTA and solve for Q^* first:

Solve for
$$Q^*$$
: $WTP_M(Q^*) = WTA_M(Q^*)$
Solve for P^* : $P^* = WTP(Q^*)$ or $P^* = WTA(Q^*)$