Adding Supply

Two sellers:
$\mathrm{E} \quad W T A_{E}=2 Q_{E}^{S}$
F $\quad W T A_{F}=Q_{F}^{S}$

Graphing:

For each P , how much will seller E offer, Q_{E}^{S} ?

Decision rules:

- Sell if $P \geq W T A_{E}$
- Don't sell if $P<W T A_{E}$

Result: Q_{E}^{*} is where WTA crosses P:
$W T A_{E}\left(Q_{E}^{*}\right)=P$

Use to derive E's supply equation $Q_{E}^{S}(P)$

$$
\begin{array}{ll}
\text { WTA equation: } & W T A_{E}=2 Q_{E}^{S} \\
\text { Decision rule: } & W T A_{E}=P
\end{array}
$$

Eliminating $W T A_{E}$:

$$
\begin{aligned}
& P=2 Q_{E}^{S} \\
& Q_{E}^{S}=\frac{1}{2} P
\end{aligned}
$$

Seller F's supply:

$$
\begin{aligned}
& W T A_{F}=Q_{F}^{S} \\
& W T A_{F}=P
\end{aligned}
$$

Solving:

$$
\begin{aligned}
& P=Q_{F}^{S} \\
& Q_{F}^{S}=P
\end{aligned}
$$

Finding the market supply:

$$
\begin{aligned}
& Q_{M}^{S}=\sum_{i}^{N} Q_{i}^{S} \\
& Q_{M}^{S}=Q_{E}^{S}+Q_{F}^{S} \\
& Q_{M}^{S}=\left(\frac{1}{2} P\right)+(P) \\
& Q_{M}^{S}=\frac{3}{2} P
\end{aligned}
$$

Graphing:

Reversing to find $W T A_{M}$:

$$
\begin{aligned}
& Q_{M}^{S}=\frac{3}{2} P \\
& W T A_{M}=P \\
& Q_{S}^{M}=\frac{3}{2} W T A_{M} \\
& W T A_{M}=\frac{2}{3} Q_{M}^{S}
\end{aligned}
$$

Gives the WTA for any given Q:
Example: WTA for unit 15?

$$
\mathrm{WT} A_{M}=\frac{2}{3} * 15=\$ 10
$$

