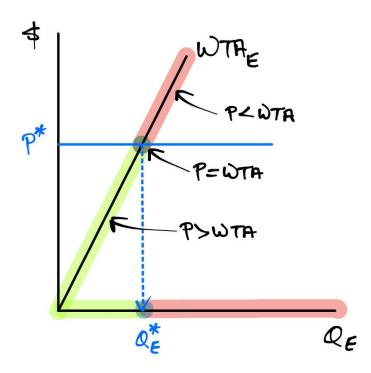

Adding Supply

Two sellers:

Graphing:



For each P, how much will seller E offer, Q_E^S ?

Decision rules:

- Sell if $P \ge WTA_E$
- Don't sell if $P < WTA_E$

Result: Q_E^* is where WTA crosses P: $WTA_E(Q_E^*) = P$

Use to derive E's supply equation $Q_E^S(P)$

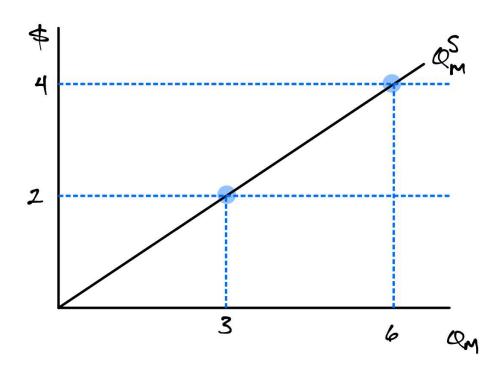
WTA equation: $WTA_E = 2Q_E^S$ Decision rule: $WTA_E = P$

Eliminating WTA_E :

$$P = 2Q_E^S$$
$$Q_E^S = \frac{1}{2}P$$

Seller F's supply:

 $WTA_F = Q_F^S$ $WTA_F = P$


Solving:

$$P = Q_F^S$$
$$Q_F^S = P$$

Finding the market supply:

$$Q_M^S = \sum_{i}^{N} Q_i^S$$
$$Q_M^S = Q_E^S + Q_F^S$$
$$Q_M^S = \left(\frac{1}{2}P\right) + (P)$$
$$Q_M^S = \frac{3}{2}P$$

Graphing:

Reversing to find WTA_M :

$$Q_M^S = \frac{3}{2}P$$
$$WTA_M = P$$
$$Q_S^M = \frac{3}{2}WTA_M$$
$$WTA_M = \frac{2}{3}Q_M^S$$

Gives the WTA for any given Q:

Example: WTA for unit 15?

$$WTA_M = \frac{2}{3} * 15 = \$10$$

•