Impacts on Agents

Determine Q's using individual demands and supplies

Evaluate each at $P = P^* = 10$ Buyers: A $Q_A^D = 10 - 0.5P$ $Q_A^D = 5$ B $Q_B^D = 20 - P$ $Q_B^D = 10$ Total 15 Sellers: E $Q_E^S = 0.5P$ $Q_E^S = 5$ F $Q_F^S = P$ $Q_F^S = 10$

Total

 $Q_F^S = 1$ 15

Note: it's a coincidence that $Q_A^D = Q_E^S$ and $Q_B^D = Q_F^S$

Now compute welfare impacts: CS and PS

With algebraic equations CS and PS are computed using areas:

- CS is the area *below* WTP and *above* P (adds up $WTP_i P$)
- PS is the area *below* P and *above* WTA (adds up $P WTA_i$)

Implementing here:

$$PS_E = \frac{1}{2}(5)(10-0) \qquad PS_F = \frac{1}{2}(10)(10-0) \qquad PS_M = \frac{1}{2}(15)(10-0) PS_E = $25 \qquad PS_F = $50 \qquad PS_M = $75$$

•

- .

Total gain:

SS = CS + PS SS = \$75 + \$75 = \$150