Determine Q's using individual demands and supplies

Evaluate each at $P=P^{*}=10$

Buyers:
A

$$
Q_{A}^{D}=10-0.5 P \quad Q_{A}^{D}=5
$$

B
$Q_{B}^{D}=20-P$
$Q_{B}^{D}=10$
Total
15

Sellers:
E
$Q_{E}^{S}=0.5 P$
$Q_{E}^{S}=5$
F
$Q_{F}^{S}=P$
$Q_{F}^{S}=10$
Total
15

Note: it's a coincidence that $Q_{A}^{D}=Q_{E}^{S}$ and $Q_{B}^{D}=Q_{F}^{S}$

Now compute welfare impacts: CS and PS

With algebraic equations CS and PS are computed using areas:

- CS is the area below WTP and above $\mathrm{P}\left(\right.$ adds up $\left.W T P_{i}-P\right)$
- PS is the area below P and above WTA (adds up $P-W T A_{i}$)

Implementing here:

$$
\begin{array}{lll}
P S_{E}=\frac{1}{2}(5)(10-0) & P S_{F}=\frac{1}{2}(10)(10-0) & P S_{M}=\frac{1}{2}(15)(10-0) \\
P S_{E}=\$ 25 & P S_{F}=\$ 50 & P S_{M}=\$ 75
\end{array}
$$

Total gain:

$$
\begin{aligned}
& \mathrm{SS}=\mathrm{CS}+\mathrm{PS} \\
& \mathrm{SS}=\$ 75+\$ 75=\$ 150
\end{aligned}
$$

