Analyzing Policies

Core approach:

Compute two market outcomes for two cases:
(1) Baseline or "business as usual" (BAU)
(2) Policy scenario with the policy change in place

Compare the results:
Changes in: $P, Q, C S, P S$ and more
Formally known as comparative statics

Example: imposing a new sales tax

Case	Description	Tax
1	BAU: no tax	$T=0$
2	Policy: tax \$T per unit	$T>0$

Types of sales taxes:
Unit tax: $\quad \$$ tax per unit [this example]
Ad valorem tax: $\%$ of price [more common]

Adds a complication:
Tax causes buyer and seller prices to differ
Define two prices:

Price paid by buyer: $\quad P^{d} \quad$ (d indicates demand side) Price seller keeps: $\quad P^{s} \quad$ (s indicates supply side)

Visualizing the flow of money through a transaction:

In algebra:

$$
P^{d}=P^{s}+T
$$

What goes into the transaction must equal what comes out. Technically, an "accounting identity"

Changing the decision rules accordingly:

Buyers buy until Q^{*} where: $\quad W T P\left(Q^{*}\right)=P^{d}$ Sellers sell until:
$W T A\left(Q^{*}\right)=P^{s}$

Immediate result: moves the equilibrium to an inefficient Q

Can see by substituting decision rules into accounting equation:

$$
P^{d}=P^{s}+T
$$

$W T P\left(Q^{*}\right)=W T A\left(Q^{*}\right)+T$

Implication:

- If $T>0$, will end up at Q^{*} where $W T P\left(Q^{*}\right)>W T A\left(Q^{*}\right)$
- Q^{*} will be too small

Intuition behind inefficiency?

1. Rewrite equation:

$$
\operatorname{WTP}\left(Q^{*}\right)-W T A\left(Q^{*}\right)=T
$$

2. Also know difference is SS :

$$
\operatorname{WTP}\left(Q^{*}\right)-W T A\left(Q^{*}\right)=S S\left(Q^{*}\right)
$$

3. Thus, at new Q^{*} :

$$
\operatorname{SS}\left(Q^{*}\right)=T
$$

Last unit has $S S=T$:
Tax eliminates all trades with SS gains less than T

