Set the tax:

$$
T=200
$$

Find P^{d} and P^{s} :

$$
\begin{aligned}
& Q_{M}^{D}=Q_{M}^{S} \\
& \frac{2000-P^{d}}{5}=\frac{P^{s}}{15} \\
& P^{d}=P^{s}+200 \\
& \frac{2000-\left(P^{s}+200\right)}{5}=\frac{P^{s}}{15} \\
& \frac{2000}{5}-\frac{P^{s}}{5}-\frac{200}{5}=\frac{P^{s}}{15} \\
& 360=\frac{4 P^{s}}{15} \\
& P_{2}^{s}=\$ 1350 \\
& P_{2}^{d}=\$ 1350+\$ 200=\$ 1550
\end{aligned}
$$

. $P_{2}^{d} \neq P_{1}^{d}+200$ [would be $\$ 1700$]
Generally can not just add the tax
to the old price to get the new price.
Both prices change relative to BAU:

$$
\begin{array}{ll}
\boldsymbol{\Delta} \boldsymbol{P}^{d}=P_{2}^{d}-P_{1}^{d}=1550-1500=+\mathbf{5 0} & \boldsymbol{\Delta} \text { = Bad for buyer } \\
\boldsymbol{\Delta} \boldsymbol{P}^{s}=P_{2}^{s}-P_{1}^{s}=1350-1500=-\mathbf{1 5 0} & \nabla=\text { Bad for seller }
\end{array}
$$

Tax burden:

Portion of a tax borne by an agent; here, it's the portion of the $\$ 200$:

Agent	Cost to agent, \$	Burden, \% of T
Buyer	$\$ 50$	$50 / 200=25 \%$
Seller	$\$ 150$	$150 / 200=75 \%$

Now find Q_{M}^{D} and Q_{M}^{S} :

$$
\begin{aligned}
& Q_{M}^{D}=\frac{2000-\mathbf{1 5 5 0}}{5}=90 \\
& Q_{M}^{S}=\frac{\mathbf{1 3 5 0}}{15}=90
\end{aligned}
$$

Graphing:

Practice finding an equilibrium with a tax:

Economic Skills Project exercise MT-101

https://wilcoxen.maxwell.insightworks.com/esp/mt101/

Daily exercise

