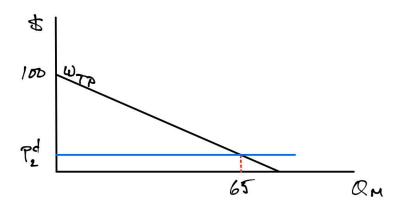

Subsidies

Government or other entity pays for part of a transaction:

Buyer pays: P^d

Government pays: S

New flow of money:

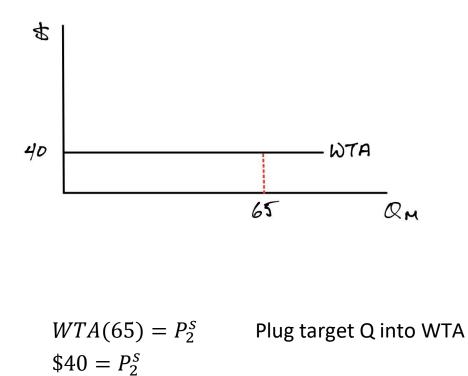


$$P^d + S = P^s$$

No change in the decision rules: $WTP = P^d$ $WTA = P^s$

Designing a subsidy for the example model:

Step 1: find P_2^d needed for demand to hit target Q_M^e



$$100 - Q_M^D = P_2^d$$

$$100 - 65 = P_2^d$$

$$P_2^d = 35$$

Step 3: use the accounting rule to find S

$$P_2^d + S = P_2^s$$

\$35 + S = \$40
 $S = 5

Efficient subsidy and MB_e :

In general, S will always be equal to MB_e at efficient Q_M^e

For efficiency want:

MSB = WTA

 $WTP + MB_e = WTA$

Effect of subsidy S:

Accounting: $P^d + S = P^s$ Buyer rule: $WTP = P^d$ Seller rule: $WTA = P^s$

Substituting into the accounting rule:

WTP + S = WTA

Now solve for the *S* to get to efficiency:

Goal: $WTP + MB_e = WTA$ Accounting: WTP + S = WTA

 $WTP + S = WTP + MB_e$

 $S = MB_e$

The subsidy should be set equal to the externality.

When MB_e is not be constant the rule applies at the efficient Q:

 $S = MB_e(Q_M^e)$

Daily exercise