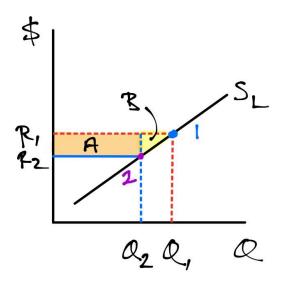

Price Ceiling: Rent Control

Model:

Suppliers:	Landlords (L)
Demanders:	Tenants (T)
Price:	Rent (R)

Policy:

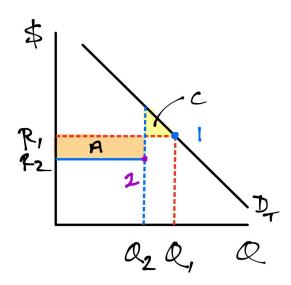
Sets maximum rent to $R_2 < R_1$


New apartments: Q_2

Two groups of tenants:

Stayers: Q_2 Leavers: $Q_1 - Q_2$

Impact on welfare:


Landlords:

 $\Delta PS = -(A+B)$

A: Transfer to stayers B: Lost gains on leavers

Tenants:

 $\Delta CS = +A - C$

A: Transfer from landlords C: Lost gains to leavers

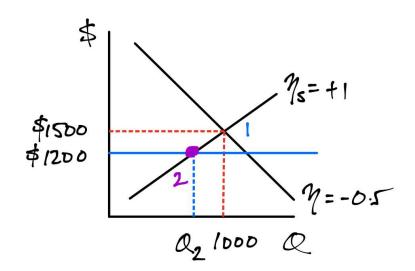
Total ΔSS :

$$\Delta SS = \Delta CS + \Delta PS$$

$$\Delta SS = +A - C - (A + B)$$

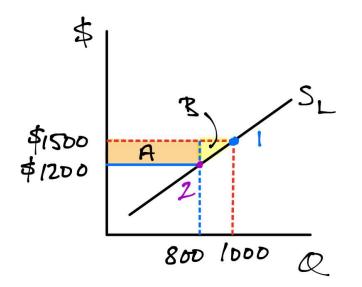
$$\Delta SS = -(B + C)$$

Numerical example:


Case 1: BAU with no rent control

 $R_1 = \$1500$ $Q_1 = 1000$ $\eta = -0.5$ $\eta_S = +1$

Case 2: Rent control


$$R_2 = $1200$$

Impact on Q:

$$\% \Delta P = \frac{-300}{1500} = -20\%$$

$$\% \Delta Q = \eta_{s} * \% \Delta P$$

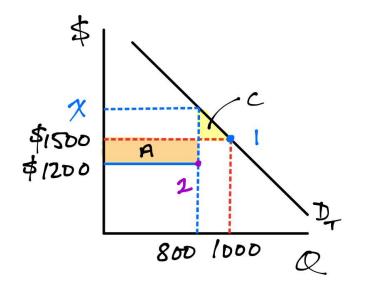
$$\% \Delta Q = (+1)(-20\%)$$

$$\% \Delta Q = -20\%$$

$$\Delta Q = -200$$

$$Q_{2} = 800$$

Landlords:



 $\Delta PS = -(A+B)$

A = 300*800 = 240,000 B = 0.5*300*200 = 30,000

 $\Delta PS = -270,000$

Tenants:

 $\Delta CS = +A - C$

A = \$240,000 C = 0.5*(X-1500)*200

Need X

Interpretation of X:

Rent control lowers **supply** to 800 X = rent that would drive **demand** down to 800 Roughly: the unofficial or underground market price

Calculating X:

$$\frac{\%\Delta Q}{\%\Delta P} = \eta$$

$$\frac{-20\%}{\%\Delta P} = -0.5$$

%\Delta P = $\frac{-20\%}{-0.5} = +40\%$
\Delta P = 0.4 * 1500 = 600
X = 1500 + 600 = 2100

Area C:

$$C = 0.5*600*200 = 60,000$$
$$\Delta CS = +$240,000 - $60,000 = $180,000$$

Total ΔSS :

 $\Delta SS = \Delta CS + \Delta PS$ $\Delta SS = +\$180,000 - \$270,000$ $\Delta SS = -\$90,000$

Check: B = \$30,000 C = \$60,000 B+C = \$90,000 ✓

Analysis with algebraic equations is similar

Daily exercise