Key application of the model of choice

Example: popcorn and movies
Preferences:

$$
\begin{aligned}
& \frac{Q_{p}}{Q_{m}}=\frac{2}{1} \\
& Q_{p}=2 Q_{m}
\end{aligned}
$$

Budget constraint:

$$
P_{p} Q_{p}+P_{m} Q_{m}=M
$$

Now leave prices and M as variables

Substituting in the preference equation:

$$
\begin{aligned}
& P_{p} \boldsymbol{Q}_{p}+P_{m} Q_{m}=M \\
& P_{p}\left(\mathbf{2} \boldsymbol{Q}_{\boldsymbol{m}}\right)+P_{m} Q_{m}=M \\
& 2 P_{p} \boldsymbol{Q}_{\boldsymbol{m}}+P_{\boldsymbol{m}} \boldsymbol{Q}_{\boldsymbol{m}}=M
\end{aligned}
$$

Factoring out Q_{m} :

$$
\left(2 P_{p}+P_{m}\right) \boldsymbol{Q}_{\boldsymbol{m}}=M
$$

Solving for Q_{m} gives the demand equation for movies:

$$
Q_{m}=\frac{M}{2 P_{p}+P_{m}}
$$

\mathbf{Q} as a function of \mathbf{M} and prices: $Q_{m}\left(M, P_{p}, P_{m}\right)$

Also know:

$$
Q_{p}=2 Q_{m}
$$

Substituting for Q_{m} gives popcorn demand:

$$
\begin{aligned}
& Q_{p}=2 Q_{m}=2\left(\frac{M}{2 P_{p}+P_{m}}\right) \\
& Q_{p}=\frac{2 M}{2 P_{p}+P_{m}}
\end{aligned}
$$

\mathbf{Q} as a function of \mathbf{M} and prices: $Q_{p}\left(M, P_{p}, P_{m}\right)$

Collecting the demands:

$$
Q_{m}=\frac{M}{2 P_{p}+P_{m}} \quad Q_{p}=\frac{2 M}{2 P_{p}+P_{m}}
$$

Can plot Q_{m} as a function of P_{m} for given M, P_{p} :

Case 1
$M=\$ 28$
$P_{p}=\$ 3$
$Q_{m}=\frac{\$ 28}{2 * \$ 3+P_{m}}$

Intercept: $Q_{m}=4 \frac{2}{3}$

Case 2
$M=\$ 28$
$P_{p}=\$ 1$
$Q_{m}=\frac{\$ 28}{2 * \$ 1+P_{m}}$

Intercept: $Q_{m}=9 \frac{1}{3}$

