Deriving Demand Equations

Key application of the model of choice

Example: popcorn and movies

Preferences:

$$\frac{Q_p}{Q_m} = \frac{2}{1}$$
$$Q_p = 2Q_m$$

Budget constraint:

 $P_p Q_p + P_m Q_m = M$

Now leave prices and M as variables

Substituting in the preference equation:

$$P_{p}Q_{p} + P_{m}Q_{m} = M$$

$$P_{p}(2Q_{m}) + P_{m}Q_{m} = M$$

$$2P_{p}Q_{m} + P_{m}Q_{m} = M$$
Factoring out Q_{m} :
$$(2P_{p} + P_{m})Q_{m} = M$$

Solving for Q_m gives the **demand equation** for **movies**:

$$Q_m = \frac{M}{2P_p + P_m}$$

Q as a function of **M** and **prices**: $Q_m(M, P_p, P_m)$

Also know:

$$Q_p = 2Q_m$$

Substituting for Q_m gives **popcorn demand**:

$$Q_p = 2Q_m = 2\left(\frac{M}{2P_p + P_m}\right)$$
$$Q_p = \frac{2M}{2P_p + P_m}$$

Q as a function of **M** and **prices**: $Q_p(M, P_p, P_m)$

Collecting the demands:

$$Q_m = \frac{M}{2P_p + P_m} \qquad \qquad Q_p = \frac{2M}{2P_p + P_m}$$

Can plot Q_m as a function of P_m for given M, P_p :

