Generalizing the Perfect Complements Demands

Generalizing to other PC cases

Preferences:

Suppose household wants β units of X for each unit of Y :

$$
\frac{Q_{x}}{Q_{y}}=\frac{\beta}{1}=\beta
$$

β is a parameter: chosen to fit case at hand
Example 1:
2 popcorn $\left(Q_{x}\right)$ for each movie $\left(Q_{y}\right)$

$$
\beta=\frac{Q_{x}}{Q_{y}}=\frac{2}{1}=2
$$

Example 2:
4 units of Y for every unit of X

$$
\beta=\frac{Q_{x}}{Q_{y}}=\frac{1}{4}=0.25
$$

Graphing the general version:

$$
\begin{aligned}
\frac{Q_{x}}{Q_{y}} & =\frac{\beta}{1} \\
Q_{x} & =\beta Q_{y}
\end{aligned}
$$

Budget constraint:

$$
P_{x} Q_{x}+P_{y} Q_{y}=M
$$

Applying the preference equation:

$$
\begin{aligned}
& P_{x}\left(\beta Q_{y}\right)+P_{y} Q_{y}=M \\
& \left(\beta P_{x}+P_{y}\right) Q_{y}=M \\
& Q_{y}=\frac{M}{\beta P_{x}+P_{y}} \\
& Q_{x}=\beta Q_{y}
\end{aligned}
$$

$$
Q_{x}=\frac{\beta M}{\beta P_{x}+P_{y}}
$$

General PC demand equations:

$$
Q_{x}=\frac{\beta M}{\beta P_{x}+P_{y}} \quad Q_{y}=\frac{M}{\beta P_{x}+P_{y}}
$$

Will be essential for determining preferences:

1. Observe $M, P_{x}, P_{y}, Q_{x}, Q_{y}$
2. Infer β via econometric estimation

Applying to the examples:

Example 1:
2 popcorn for each movie
$\mathrm{X}=$ popcorn
$Y=$ movies
$\beta=2$
$Q_{p}=\frac{2 M}{2 P_{p}+P_{m}}$
$Q_{m}=\frac{M}{2 P_{p}+P_{m}}$

Example 2: daily exercise
4 units of Y for every unit of X
$\beta=0.25$
$Q_{x}=\frac{0.25 M}{0.25 P_{x}+P_{y}}$
$Q_{y}=\frac{M}{0.25 P_{x}+P_{y}}$

Alternately, multiply each by 4/4:
$Q_{x}=\frac{0.25 M}{0.25 P_{x}+P_{y}} *\left(\frac{4}{4}\right)=\frac{M}{P_{x}+4 P_{y}}$
$Q_{y}=\frac{M}{0.25 P_{x}+P_{y}} *\left(\frac{4}{4}\right)=\frac{4 M}{P_{x}+4 P_{y}}$
$Q_{x}=\frac{M}{P_{x}+4 P_{y}}$
$Q_{y}=\frac{4 M}{P_{x}+4 P_{y}}$
Nice interpretation:
Denominator is the cost of a bundle with 1 X and 4 Y

