Demand for a Perfect Substitute

A second corner case; a bit more complex

Example: gas from BP or Exxon

Preferences:

Considers goods identical: willing to trade 1 for 1 $\mbox{MRS} = -1$

Budget constraint:

$$M = $24$$

$$P_e = \$2$$

$$P_b = \$4$$

Y intercept:
$$24/2 = 12$$

X intercept:
$$24/4 = 6$$

Combining:

Initial case $P_b=\$4$

$$\begin{array}{l} Q_e = 12 \\ Q_b = 0 \end{array}$$

Now chart out the demand for **BP** (X axis): $Q_b(P_b)$

Suppose $P_b = \$3$; changes **BC** but not ICs

 $Q_b = 0$

Suppose $P_b = \$2$

 $Q_b \epsilon [0,12]$

Suppose $P_b = \$1$

$Q_b = \frac{M}{P_b}$

$$Q_b = 24$$

Plotting the demand curve:

Has three regions; depends on P_b :

If	Then
$P_b > P_e$	$Q_b = 0$
$P_b = P_e$	$Q_b \in [0,12]$
$P_b < P_e$	$Q_b = M/P_b$

Perfect substitutes preferences: Usually all-or-nothing demands