Cobb Douglas Preferences

General Cobb-Douglas utility function:

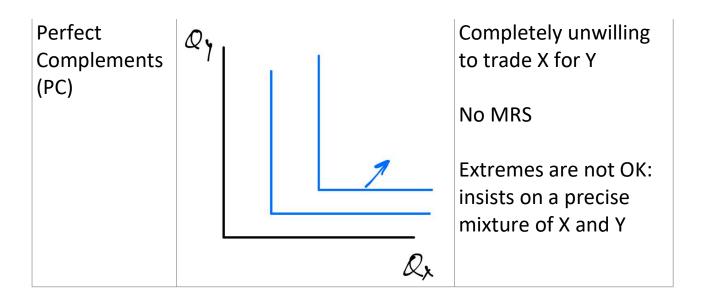
$$U = (Q_x)^a (Q_y)^{1-a}$$

Has downward-sloping curved ICs

a is a *parameter*: chosen to fit the specific case at hand

Conceptually, Cobb-Douglas is half way between previous extremes:

Туре	Typical IC diagram	Characteristics
Perfect Substitutes (PS)	QY	Perfectly willing to trade X for Y
		MRS is constant
		Extremes (only X or Y) are OK
	Øx	
Cobb- Douglas (CD)	Qy IV	Moderately willing to trade X for Y
		MRS varies
		Moderately prefers mixtures to extremes
	Q _x	



Finding the CD demand equations

Using calculus and the CD utility function, can show slope of ICs is:

$$m = MRS = -\frac{aQ_y}{(1-a)Q_x}$$

Now have two equations to find the equilibrium:

Budget constraint:

$$P_x Q_x + P_y Q_y = M$$

Matching slopes of the IC and BC:

$$MRS = -\frac{P_x}{Py}$$

$$-\frac{aQ_y}{(1-a)Q_x} = -\frac{P_x}{P_y}$$

Solving two equations for Q_x and Q_y gives the CD demands:

$$Q_x = \frac{aM}{P_x} \qquad \qquad Q_y = \frac{(1-a)M}{P_y}$$

Interpretation of parameter a

Rearrange the demands:

$$\frac{P_x Q_x}{M} = a \qquad \qquad \frac{P_y Q_y}{M} = 1 - a$$

а	= share of M spent on X
1 – <i>a</i>	= share of M spent on Y