Deducing Preferences from Behavior

Fundamental strategy

1. Collect data on bundles purchased
2. Find demand equations that match

Result:

- Allows predictions of response to policies ($\Delta \mathrm{Q}$, etc)
- Allows measurement of welfare impacts ($\Delta S S$, etc)

Example:

Observe a household during two periods, months 1 and 2:

Observation	M	P_{x}	P_{y}	Q_{x}	Q_{y}
1	100	1	2	20	40
2	120	2	2	12	48

Blue: Economic conditions
Yellow: Choice

Look for demand equations that are consistent with the data
Fundamental process:

1. Guess a general demand equation
2. Use first observation to calculate unknown parameters
3. Test prediction on second observation
4. Reject guess and try again if the prediction is wrong

Try PC

General demand for X :

$$
Q_{x}=\frac{\beta M}{\beta P_{x}+P_{y}}
$$

Inserting data for observation 1:

$$
\begin{aligned}
M & =100, P_{x}=1, P_{y}=2, Q_{x}=20 \\
20 & =\frac{\beta * 100}{\beta * 1+2}
\end{aligned}
$$

Solving for β :

$$
\begin{aligned}
& 20(\beta+2)=100 \beta \\
& 20 \beta+40=100 \beta \\
& 40=80 \beta \\
& \beta=0.5
\end{aligned}
$$

Conclusion: PC demand that fits observation 1

$$
Q_{x}=\frac{0.5 M}{0.5 P_{x}+P_{y}}
$$

Predicting Q_{x} for observation 2

$$
\begin{aligned}
& M=120, P_{x}=2, P_{y}=2 \\
& Q_{x}=\frac{0.5 * 120}{0.5 * 2+2}=\frac{60}{3}=20
\end{aligned}
$$

Compare with actual for observation 2 :

Observed $Q_{x}=12$

Conclusion: reject PC Behavior is not consistent with PC preferences

Important note

Must compare one demand for two observations

- First observation to calculate the parameter
- Second observation to test the prediction

Not equivalent to use two demands and one observation

Try CD

General demand for X :

$$
Q_{x}=\frac{a M}{P_{x}}
$$

Inserting data for observation 1:

$$
\begin{aligned}
& \mathrm{M}=100, P_{x}=1, P_{y}=2, Q_{x}=20 \\
& 20=\frac{a * 100}{1}
\end{aligned}
$$

Solving for a

$$
a=\frac{20}{100}=0.2
$$

Conclusion: CD demand that fits observation 1:

$$
Q_{x}=\frac{0.2 M}{P_{x}}
$$

Predicting Q_{x} for observation 2

$$
\begin{aligned}
& M=120, P_{x}=2, P_{y}=2 \\
& Q_{x}=\frac{0.2 * 120}{2}=\frac{24}{2}=12
\end{aligned}
$$

Compare with actual for observation 2:

$$
\text { Observed } Q_{x}=12
$$

Conclusion: can't reject CD
Behavior is consistent with CD preferences

General approach

- Use econometrics to fit demand equations
- Conceptually, follows steps above

Quick tests for some preferences

If preferences are PC:

$$
\frac{Q_{x}}{Q_{y}}=\beta
$$

Can test by checking ratio for two observations:

Observation	Q_{x}	Q_{y}	β
1	20	40	$20 / 40=0.5$
2	12	48	$12 / 48=0.25$

Differs: reject PC

CD

If preferences are CD:

$$
\frac{P_{x} Q_{x}}{M}=a
$$

Checking share for two observations:

Observation M	P_{x}	Q_{x}	a	
1	100	1	20	$1^{*} 20 / 100=0.2$
2	120	2	12	$2 * 12 / 120=0.2$

Same: CD is consistent; can't reject

Daily exercise

