Engel Curves and Income Elasticities

Second application of the choice model: Engle Curves

Change in demand in response to changes in *income* (M)

Example: DVDs (d) and all other goods (a)

Scenario 1, BAU: $P_d = \$15$ $P_a = \$1$ M = \$180

Suppose person chooses 5 DVDs under BAU:

Scenario 2, Policy: Same prices as BAU Income rises to M = \$360

BC moves out:

Where will equilibrium 2 end up?

Four possible areas for the new equilibrium

I) Q_d rises 100% II) Q_d rises >100% III) Q_d rises <100%

IV) Q_d falls

Example of Case I: Chooses 10 DVDs at new M

Applications Page 2

DVDs are proportional to income: Doubling M \Rightarrow doubles Q_d

Define *income elasticity*:

$$\eta_m = \frac{\% \Delta Q}{\% \Delta M}$$

Applying to example:

$$\% \Delta Q = \frac{10 - 5}{5} = 100\%$$
$$\% \Delta M = \frac{360 - 180}{180} = 100\%$$
$$\eta_m = \frac{100\%}{100\%} = 1$$

 $\eta_m = 1$:

• Q_d rises in proportion to income: unitary elasticity

Graphing Person 1's Engel Curve:

Income on the Y axis Quantity on the X axis

Example of Case II: Chooses 12 DVDs at new M

Dashed green lines show case I for reference ($\eta_m = 1$)

Income elasticity?

$$\% \Delta Q = \frac{12 - 5}{5} = \frac{7}{5} = 140\%$$
$$\eta_m = \frac{140\%}{100\%} = 1.4$$

 $\eta_m > 1$:

- *Q_d* rises **more than** in proportion to income: "luxury good"
- Engel curve relatively **flat** (like large supply elasticity)

Important note: *share* of income spent on D *rises* with *income*:

Income	Q_d	Share equation		Share
\$180	5	$P_d Q_d$	\$15 * 5	42%
		= 	\$180	
\$360	12	$P_d Q_d$	\$15 * 12	50%
		\overline{M}	\$360	

Taxing $\eta_m > 1$ goods will generally be *progressive*

Example: Suppose price includes \$1 tax burden T_d

Income	Q_d	Share equation		ETR
\$180	5	$T_d Q_d$	_ \$1 * 5	2.8%
		M	\$180	
\$360	12	$T_d Q_d$	\$1 * 12	3.3%
		<u> </u>	\$360	

Example of Case III: Chooses 7 DVDs at new M

Income elasticity:

$$\% \Delta Q = \frac{2}{5} = 40\%$$
$$\eta_m = \frac{40\%}{100\%} = 0.4$$

$$1 > \eta_m > 0$$

- Q_d rises, but less than in proportion to M: "necessity good"
- Engel Curve relatively steep

Budget *share decreases* with income:

Income	Q_d	Share equation		Share
\$180	5	$P_d Q_d$	\$15 * 5	42%
		\overline{M}	\$180	
\$360	7	$P_d Q_d$	\$15 * 7	29%
		\overline{M}	\$360	

Taxing $\eta_m < 1$ goods is generally *regressive*

Income elasticity:

$$\%\Delta Q = \frac{-1}{5} = -20\%$$
$$\eta_m = \frac{-20\%}{1000\%} = -0.2$$

$$\eta_m = \frac{100\%}{100\%} = -0$$

 $\eta_m < 0$:

- Q_d falls when income rises: "inferior good"
- Engel Curve slopes backward

Examples:

Buses, Kraft mac and cheese, ramen, Yugos ...

Classes of goods:

Main categories:

Normal: $\eta_m > 0$

Inferior: $\eta_m < 0$

Schematically:

Class can change as income rises:

Example: hamburger

High income: Inferior M↑ causes Q↓

Low income: Normal M 个 causes Q 个