Human Capital: Introduction

Investing in education and training:

Spend money now in order to have higher wages in the future

Example:

Income endowment:

$$I_0 = 25k$$
$$I_1 = 25k$$

Can also take classes in period 0 to raise income in period 1:

Define variables:

Tu = tuition paid at 0 Ra = raise in period 1

Suppose the following options are available:

Classes	Ти	Ra
0	0	0
1	5k	10k
2	10k	17k
3	15k	23k
4	20k	28k
5	25k	32k

Each class costs \$5k and raises income, but at a decreasing rate

Resulting options for *net income* (disposable income) after accounting for tuition and raise:

$$I_0^{net} = I_0 - Tu$$
$$I_1^{net} = I_1 + Ra$$

In thousands:

Classes	I ₀	Ти	I_0^{net}	I_1	Ra	I_1^{net}
0	25	0	25	25	0	25
1	25	5	20	25	10	35
2	25	10	15	25	17	42
3	25	15	10	25	23	48
4	25	20	5	25	28	53
5	25	25	0	25	32	57

Can choose *net income* bundle by adjusting number of classes.

Which number of classes is best?

Initially, suppose can't borrow or save: must consume net income

$$\begin{array}{l} C_0 = I_0^{net} \\ C_1 = I_1^{net} \end{array}$$

Graphing the options:

Known as a "human capital production function"

Feasible set of consumption bundles achievable by school alone.

Now add ICs to find the option chosen:

Case 2: Perfect complements

 $\frac{C_0}{C_1} = \frac{1}{1}$

Case 3: ICs with more willingness to trade C_0 for C_1

Linking N, tuition (Tu) and the raise (Ra):

Key insight: Without access to borrowing or saving: Many preferences lead to N=0 Examples: case 1 (impatient), case 2 (PC)

Now add option to borrow or save

Suppose r = 5%

Now have *two* decisions:

- 1. Number of classes to take
- 2. Amount to borrow or save

Can think them through in that order

Suppose chooses N=0; what bundles are feasible?

Net income for N=0:

$$I_{0}^{net} = 25k$$

Applications Page 5

Suppose chooses N=1; what bundles are feasible?

Net income for N=1:

$$I_0^{net} = 25k - 5k = 20k$$

$$I_1^{net} = 25k + 10k = 35k$$

$$PVI = 20k + \frac{35k}{1.05} = 53.3k$$

Overlaying the BC0 and BC1 sets:

Feasible set for BC1 contains:

- All bundles in BC0 (darker color)
- **Plus** bundles with more C_0 , C_1 or both (lighter color)

Implication:

BC1 is better for *all* preferences Technically, BC1 dominates BC0