Investing in education and training:
Spend money now in order to have higher wages in the future

Example:

Income endowment:

$$
\begin{aligned}
& I_{0}=25 k \\
& I_{1}=25 k
\end{aligned}
$$

Can also take classes in period 0 to raise income in period 1:

Define variables:
$T u=$ tuition paid at 0
$R a=$ raise in period 1

Suppose the following options are available:

Classes	$T u$	$R a$
0	0	0
1	5 k	10 k
2	10 k	17 k
3	15 k	23 k
4	20 k	28 k
5	25 k	32 k

Each class costs $\$ 5 \mathrm{k}$ and raises income, but at a decreasing rate

Resulting options for net income (disposable income) after accounting for tuition and raise:

$$
\begin{aligned}
& I_{0}^{\text {net }}=I_{0}-T u \\
& I_{1}^{\text {net }}=I_{1}+R a
\end{aligned}
$$

In thousands:

Classes	I_{0}	Tu	$I_{0}^{\text {net }}$	I_{1}	$R a$	$I_{1}^{\text {net }}$
0	25	0	25	25	0	25
1	25	5	20	25	10	35
2	25	10	15	25	17	42
3	25	15	10	25	23	48
4	25	20	5	25	28	53
5	25	25	0	25	32	57

Can choose net income bundle by adjusting number of classes.

Which number of classes is best?

Initially, suppose can't borrow or save: must consume net income
$C_{0}=I_{0}^{\text {net }}$
$C_{1}=I_{1}^{\text {net }}$

Graphing the options:

Now add ICs to find the option chosen:

Case 1: Very steep ICs

Case 2: Perfect complements
$\frac{C_{0}}{C_{1}}=\frac{1}{1}$

Case 3: ICs with more willingness to trade C_{0} for C_{1}

Now, N>0

With the ICs shown:
$\mathrm{N}=3$

Linking N, tuition (Tu) and the raise ($R a$):

Key insight:
Without access to borrowing or saving:
Many preferences lead to $\mathrm{N}=0$
Examples: case 1 (impatient), case 2 (PC)

Now add option to borrow or save

Suppose $r=5 \%$

Now have two decisions:

1. Number of classes to take
2. Amount to borrow or save

Can think them through in that order

Suppose chooses $\mathrm{N}=0$; what bundles are feasible?
Net income for $\mathrm{N}=0$:

$$
\begin{aligned}
& I_{0}^{\text {net }}=25 k \\
& \text { net }
\end{aligned}
$$

$I_{1}^{n e t}=25 k$
$P V I=25 k+\frac{25 k}{1.05}=48.8 k$

Suppose chooses $\mathrm{N}=1$; what bundles are feasible?

Net income for $\mathrm{N}=1$:

$$
\begin{aligned}
& I_{0}^{n e t}=25 k-5 k=20 k \\
& I_{1}^{\text {net }}=25 k+10 k=35 k \\
& P V I=20 k+\frac{35 k}{1.05}=53.3 k
\end{aligned}
$$

Overlaying the $B C O$ and $B C 1$ sets:

Feasible set for BC 1 contains:

- All bundles in BCO (darker color)
- Plus bundles with more C_{0}, C_{1} or both (lighter color)

Implication:
$\mathrm{BC1}$ is better for all preferences
Technically, BC1 dominates BC0

