Human Capital: Adding Consumption Preferences

$B C$ with $N=3$:

$$
C_{0}+\frac{C_{1}}{1.05}=55.7 k
$$

Suppose person has PC preferences:

$$
\begin{aligned}
& \frac{C_{0}}{C_{1}}=\frac{1}{1} \\
& C_{0}=C_{1}
\end{aligned}
$$

Finding the optimal bundle:

$$
\begin{aligned}
& C_{0}+\frac{C_{0}}{1.05}=55.7 k \\
& C_{0}\left(1+\frac{1}{1.05}\right)=55.7 k \\
& C_{0}=28.5 k \\
& C_{1}=28.5 k
\end{aligned}
$$

Borrowing or saving?

$$
\begin{aligned}
& I_{0}^{n e t}=10 k \\
& C_{0}=28.5 k
\end{aligned}
$$

Borrows in period 0 :

$$
B=C_{0}-I_{0}^{\text {net }}=28.5 k-10 k=18.5 k
$$

Graphing:

Key observation:

Chooses $\mathrm{N}=0$ without access to borrowing Chooses $\mathrm{N}=3$ with access to borrowing

- Financial market separation:

Allows human capital decision (N) to be separated from the consumption decision

