Applying PV to Policies Instead of Classes

Largest PV identifies largest feasible set for policies as well

Example with three options:

Policy	Details
BAU	Provides $\mathbf{\$ 1 0 0 k}$ in 0 and $\mathbf{\$ 1 0 0 k}$ in 1
Option A	Costs $\mathbf{\$ 1 0 k}$ in 0 relative to BAU, provides additional $\mathbf{\$ 2 0 k}$ in 1
Option B	Costs $\mathbf{\$ 2 5} \mathbf{k}$ in 0 relative to BAU, provides additional $\mathbf{\$ 3 0 k}$ in 1

As a table of net payments:

Policy	Net in 0	Net in 1
BAU	$100 k$	100 k
A	$100 k-10 k=90 k$	$100 k+20 k=120 k$
B	$100 k-25 k=75 k$	$100 k+30 k=130 k$

Computing PVs at $r=10 \%$:

Policy	PV calculation	PV	Ranking
BAU	$100 k+\frac{100 k}{1.1}$	$190.9 k$	\#3
A	$90 k+\frac{120 k}{1.1}$	$199.1 k$	\#1 Best
B	$75 k+\frac{130 k}{1.1}$	$193.2 k$	\#2 Better than BAU

These are gross or absolute payoffs:

- Show what actually happens under each policy, including BAU

Often convenient to measure payoff relative to $B A U$

- Show changes from BAU as net payoffs
- Use to compute net present value (NPV)

Net present value:

NPVs for the example:

Policy	Policy PV	BAU PV	NPV	Ranking
BAU	$190.9 k$	$190.9 k$	0	\#3
A	$199.1 k$	$190.9 k$	$\mathbf{8 . 2 k}$	\#1 Best
B	$193.2 k$	$190.9 k$	$2.3 k$	\#2 Better

Can compute NPVs directly from changes in payoffs:

Policy	Change in 0	Change in 1	PV of changes	NPV
A	$-10 k$	$+20 k$	$-10 k+\frac{20 k}{1.1}$	$\mathbf{8 . 2 k}$
B	$-25 k$	$+30 k$	$-25 k+\frac{30 k}{1.1}$	$2.3 k$

Approaches are always equivalent:

$$
\begin{array}{ll}
N P V=P V(A)-P V(B A U) & N P V=P V(A-B A U) \\
\left(I_{0}^{A}+\frac{I_{1}^{A}}{1+r}\right)-\left(I_{0}^{B A U}+\frac{I_{1}^{B A U}}{1+r}\right) & \left(I_{0}^{A}-I_{0}^{B A U}\right)+\frac{\left(I_{1}^{A}-I_{1}^{B A U}\right)}{1+r}
\end{array}
$$

Can use whichever way is clearest and most convenient.

Bottom line:

Policy option with the highest PV or highest NPV:

- Largest feasible set of C_{0} and C_{1} options
- Either or both periods can be made better off
- Pareto efficient

