Applying PV to Policies Instead of Classes

Largest PV identifies largest feasible set for policies as well

Example with three options:

Policy	Details
BAU	Provides \$100k in 0 and \$100k in 1
Option A	Costs \$10k in 0 relative to BAU, provides additional \$20k in 1
Option B	Costs \$25k in 0 relative to BAU, provides additional \$30k in 1

As a table of net payments:

Policy	Net in 0	Net in 1
BAU	100 <i>k</i>	100k
A	100k - 10k = 90k	100k + 20k = 120k
В	100k - 25k = 75k	100k + 30k = 130k

Computing PVs at r = 10%:

Policy	PV calculation	PV	Ranking
BAU	$100k + \frac{100k}{1.1}$	190.9 <i>k</i>	#3
A	$90k + \frac{120k}{1.1}$	199.1 <i>k</i>	#1 Best
В	$75k + \frac{130k}{1.1}$	193.2 <i>k</i>	#2 Better than BAU

These are *gross* or *absolute* payoffs:

• Show what *actually happens* under each policy, including BAU

Often convenient to measure payoff *relative to BAU*

- Show changes from BAU as **net** payoffs
- Use to compute net present value (NPV)

Net present value:

NPVs for the example:

Policy	Policy PV	BAU PV	NPV	Ranking
BAU	190.9 <i>k</i>	190.9 <i>k</i>	0	#3
А	199.1 <i>k</i>	190.9 <i>k</i>	8.2 <i>k</i>	#1 Best
В	193.2 <i>k</i>	190.9 <i>k</i>	2.3 <i>k</i>	#2 Better

Can compute NPVs directly from changes in payoffs:

Policy	Change in 0	Change in 1	PV of changes	NPV
A	-10k	+20 <i>k</i>	$-10k + \frac{20k}{1.1}$	8.2 <i>k</i>
В	-25 <i>k</i>	+30 <i>k</i>	$-25k + \frac{30k}{1.1}$	2.3 <i>k</i>

Approaches are always equivalent:

Difference in PVs

PV of differences

$$NPV = PV(A) - PV(BAU) \qquad NPV = PV(A - BAU)$$
$$\left(I_0^A + \frac{I_1^A}{1+r}\right) - \left(I_0^{BAU} + \frac{I_1^{BAU}}{1+r}\right) \qquad (I_0^A - I_0^{BAU}) + \frac{(I_1^A - I_1^{BAU})}{1+r}$$

Can use whichever way is clearest and most convenient.

Bottom line:

Policy option with the highest PV or highest NPV:

- Largest feasible set of C₀ and C₁ options
- Either or both periods can be made better off
- Pareto efficient