Extending PV to Multiple Periods

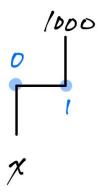
Fundamental intuition about PV:

PV of payment *F* at time *T*:

Size of bank deposit needed at 0 to have F at T

Example:

Payment \$1000 Period 1 r = 10%

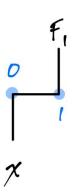


Want balance at 1 to be \$1000:

$$x(1+r) = x * 1.1 = 1000$$

$$x = \frac{1000}{1.1} = 909.09$$

Generalizing to other possible payments and interest rates:

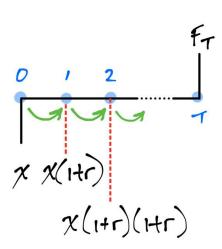


Want balance at 1 to be F_1 :

$$x(1+r) = F_1$$

$$x = \frac{F_1}{1+r}$$

Generalizing to more periods:



Period	Balance
0	\boldsymbol{x}
1	x(1+r)
2	$[x(1+r)](1+r) = x(1+r)^2$
3	$x(1+r)^3$

T	$x(1+r)^T$

Want balance at T to be F_T :

$$x(1+r)^T = F_T$$

$$x = \frac{F_T}{(1+r)^T}$$

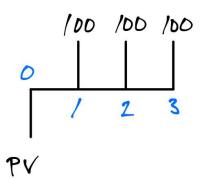
For clarity, rename x to PV:

$$PV = \frac{F_T}{(1+r)^T}$$
 \triangle PV formula 1

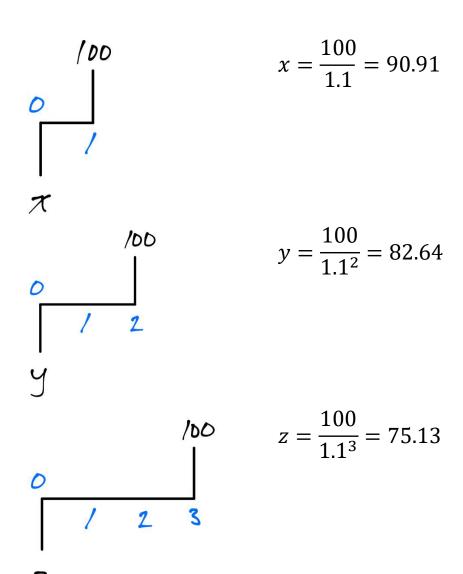
Extending to streams of multiple payments:

Example:

Want \$100 in 1, 2 and 3 r = 10%



Could use 3 accounts:



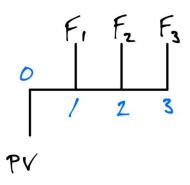
Total deposit needed:

$$PV = x + y + z$$

$$PV = \frac{100}{1.1} + \frac{100}{1.1^2} + \frac{100}{1.1^3}$$

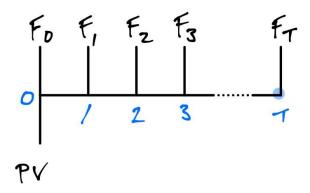
$$PV = 248.68$$

Generalizing to any three payments F_1 , F_2 , and F_3 :



$$PV = \frac{F_1}{(1+r)^1} + \frac{F_2}{(1+r)^2} + \frac{F_3}{(1+r)^3}$$

Generalizing to any finite stream with payments from 0 to T:



$$PV = \frac{F_0}{(1+r)^0} + \frac{F_1}{1+r} + \frac{F_2}{(1+r)^2} + \frac{F_3}{(1+r)^3} + \dots + \frac{F_T}{(1+r)^T}$$

$$PV = \sum_{t=0}^{T} \frac{F_t}{(1+r)^t}$$
 PV formula 2