EV and Insurance Premiums

EV also shows the premium needed to buy an **actuarially fair** insurance policy

Actuarially fair:

- Premium charged = expected claim
- Insurance company breaks even on average

Very useful when evaluating Pareto efficiency

Example:

Two people:	Alice (A), Bob (B)
Different times:	A lives now, B lives in the future
One good:	Barrel of oil owned by B
Interest rate:	r=0% for simplicity

A's WTP now: \$20

B's WTA in future depends on future car technology:

State	Probability	WTA
Electric cars (E) in use	70%	\$0
Gas cars (G) in use	30%	\$50

Graphing:

Dilemma: should A use the oil?

State	WTP _A	WTA_B	ΔSS	
E	20	0	+\$20	Gain if A uses
G	20	50	-\$30	Loss if A uses

Now add an insurance company

Offers policy that pays out **if G occurs**

Insures against the risk that gas cars are still in use

Price:	Z	premium
Pays if G:	\$50	coverage or claim if G occurs
Pays if E:	\$0	claim if E occurs

Expected claim: 0.7 * (\$0) + 0.3 * (\$50) = \$15

Solve for company's WTA:

• Minimum Z for which it would sell the policy

Insurance company's decision tree:

Evaluating the right-most node:

$$EV = 0.7 * (Z - 0) + 0.3 * (Z - 50)$$
$$EV = (0.7 + 0.3) * Z - (0.7 * 0 + 0.3 * 50)$$
$$EV = Z - 15$$

Minimum Z to sell the policy (WTA):

$$Z - 15 = 0$$
$$Z = 15$$

Aside on backing out the probability implicit in a premium:

- Z Premium
- C Coverage if the event occurs, pays 0 otherwise
- ho Probability of the event

 $Z = \rho C + (1 - \rho) * 0 = \rho C$ Premium for fair insurance

$$\rho = \frac{Z}{C}$$

SU supplemental life insurance

Z = annual cost per \$1000 coverage

Age	Z	<i>Z</i> /1000	Implied ρ , %
30	\$0.61	0.00061	0.06
40	\$0.92	0.00092	0.09
50	\$2.08	0.00208	0.21
60	\$5.59	0.00559	0.56
70	\$17.29	0.01729	1.73

Back to oil example:

With insurance, an efficient trade is possible

- 1. Alice buys policy for \$15 and names Bob as the beneficiary
- 2. Alice trades policy to Bob for the oil

Welfare impacts?

Alice:	WTP = \$20, P = \$15	$CS_A = \$5$
Insurer:	P = \$15, WTA = \$15	$PS_I = \$0$

Bob's payoff is more complicated since it depends on the state:

Variable	State E	State G
Payment for oil	\$0	\$0
Insurance claim	\$0	\$50
Total payments, P_T	\$0	\$50
WTA	\$0	\$50
$PS_B = P_T - WTA$	\$0	\$0

Graphing:

Bob *comes out even either way*: No change **in either state of the world**

Overall:

$$\Delta SS = CS_A + PS_I + PS_B$$
$$\Delta SS = \$5 + \$0 + \$0 = \$5$$

Summary:

- EV shows the premium for a fair insurance policy
- Can use to evaluate efficiency under uncertainty

Daily exercise