EV and Insurance Premiums

EV also shows the premium needed to buy an actuarially fair insurance policy

Actuarially fair:

- Premium charged = expected claim
- Insurance company breaks even on average

Very useful when evaluating Pareto efficiency

Example:

Two people: \quad Alice (A), Bob (B)
Different times: A lives now, B lives in the future
One good: Barrel of oil owned by B
Interest rate: $r=0 \%$ for simplicity

A's WTP now:
$\$ 20$

B's WTA in future depends on future car technology:

State	Probability	WTA
Electric cars (E) in use	70%	$\$ 0$
Gas cars (G) in use	30%	$\$ 50$

Graphing:

Dilemma: should A use the oil?

State	$W T P_{A}$	$W T A_{B}$	$\Delta S S$	
E	20	0	$+\$ 20$	Gain if A uses
G	20	50	$-\$ 30$	Loss if A uses

Now add an insurance company

Offers policy that pays out if \mathbf{G} occurs

Insures against the risk that gas cars are still in use
Price: $\quad Z \quad$ premium
Pays if G: $\quad \$ 50 \quad$ coverage or claim if G occurs
Pays if E : $\quad \$ 0 \quad$ claim if E occurs

Expected claim: $0.7 *(\$ 0)+0.3 *(\$ 50)=\$ 15$
Solve for company's WTA:

- Minimum Z for which it would sell the policy

Insurance company's decision tree:

Evaluating the right-most node:

$$
\begin{aligned}
& E V=0.7 *(Z-0)+0.3 *(Z-50) \\
& E V=(0.7+0.3) * Z-(0.7 * 0+0.3 * 50) \\
& E V=Z-15 \\
& \text { sell }+z-15 \\
& \text { No \$0 }
\end{aligned}
$$

Minimum Z to sell the policy (WTA):

$$
\begin{aligned}
& Z-15=0 \\
& Z=15
\end{aligned}
$$

Aside on backing out the probability implicit in a premium:

Z Premium
C Coverage if the event occurs, pays 0 otherwise
ρ Probability of the event
$Z=\rho C+(1-\rho) * 0=\rho C \quad$ Premium for fair insurance
$\rho=\frac{Z}{C}$

SU supplemental life insurance

$$
Z \text { = annual cost per } \$ 1000 \text { coverage }
$$

Age	Z	$Z / 1000$	Implied $\rho, \%$
30	$\$ 0.61$	0.00061	0.06
40	$\$ 0.92$	0.00092	0.09
50	$\$ 2.08$	0.00208	0.21
60	$\$ 5.59$	0.00559	0.56
70	$\$ 17.29$	0.01729	1.73

Back to oil example:

With insurance, an efficient trade is possible

1. Alice buys policy for $\$ 15$ and names Bob as the beneficiary
2. Alice trades policy to Bob for the oil

Welfare impacts?

$$
\begin{array}{lll}
\text { Alice: } & W T P=\$ 20, P=\$ 15 & C S_{A}=\$ 5 \\
\text { Insurer: } & P=\$ 15, W T A=\$ 15 & P S_{I}=\$ 0
\end{array}
$$

Bob's payoff is more complicated since it depends on the state:

Variable	State E	State G
Payment for oil	$\mathbf{\$ 0}$	$\mathbf{\$ 0}$
Insurance claim	$\mathbf{\$ 0}$	$\mathbf{\$ 5 0}$
Total payments, $\boldsymbol{P}_{\boldsymbol{T}}$	$\mathbf{\$ 0}$	$\mathbf{\$ 5 0}$
$W T A$	$\mathbf{\$ 0}$	$\mathbf{\$ 5 0}$
$\boldsymbol{P} \boldsymbol{S}_{\boldsymbol{B}}=\boldsymbol{P}_{\boldsymbol{T}} \mathbf{- W T A}$	$\mathbf{\$ 0}$	$\mathbf{\$ 0}$

Graphing:

Bob comes out even either way:
No change in either state of the world

Overall:

$$
\begin{aligned}
& \Delta S S=C S_{A}+P S_{I}+P S_{B} \\
& \Delta S S=\$ 5+\$ 0+\$ 0=\$ 5
\end{aligned}
$$

Summary:

- EV shows the premium for a fair insurance policy
- Can use to evaluate efficiency under uncertainty

Daily exercise

