Corner solutions

Characteristics of the equilibrium from last time:

1. On the $B C$ line (spending all of M)
2. Slope of IC matches slope of BC (tangent)

This type of equilibrium is known as an interior solution

Important exception to the slope rule: corner cases
Slope rule doesn't apply if best bundle is at a BC or IC corner

Case 1: perfect substitutes
Example: gas from BP or Exxon
Preferences:
Buyer considers goods identical, $M R S=-1$

Budget constraint:
$M=\$ 30, P_{b}=\$ 3, P_{e}=\$ 2$

Intercepts:

$$
\begin{aligned}
& Q_{e}=\frac{\$ 30}{\$ 2}=15 \\
& Q_{b}=\frac{\$ 30}{\$ 3}=10
\end{aligned}
$$

Equilibrium:

Corner case: slopes don't match

Case 2: perfect complements
Example: movies and popcorn

Feasible bundle on highest IC:

At corner of $B C$

Preferences:

Wants exactly 2 popcorn (p) with each movie (m)

Budget constraint:

$$
\mathrm{M}=\$ 28, P_{p}=\$ 3, P_{m}=\$ 8
$$

Intercepts:

$Q_{m}=\frac{\$ 28}{\$ 8}=3.5$
$Q_{p}=\frac{\$ 28}{\$ 3}=9 \frac{1}{3}$

Equilibrium:

Feasible bundle on highest IC:

At corner of IC

Corner case: slopes don't match

Finding the equilibrium bundle:

Know BC:

$$
\$ 3 * Q_{p}+\$ 8 * Q_{m}=\$ 28
$$

Know person always chooses Q's in fixed ratio:

$$
\frac{Q_{p}}{Q_{m}}=\frac{2}{1} \quad \text { or } \quad \frac{Q_{m}}{Q_{p}}=\frac{1}{2}
$$

Always start with a ratio: do not trust English

Rearranging either ratio gives:

$$
Q_{p}=2 Q_{m} \quad \text { or } \quad 2 Q_{m}=Q_{p}
$$

Substituting preference equation into the BC:

$$
\begin{aligned}
& \$ 3 *\left(2 Q_{m}\right)+\$ 8 * Q_{m}=\$ 28 \\
& \$ 6 * Q_{m}+\$ 8 * Q_{m}=\$ 28 \\
& \$ 14 * Q_{m}=\$ 28 \\
& Q_{m}=2 \\
& Q_{p}=2(2)=4
\end{aligned}
$$

Check:

$$
\$ 3 * 4+\$ 8 * 2=\$ 28
$$

Finishing the graph:

Daily exercise

