Exam 2a, Fall 2004 Notes on Solution

Part 1

Utility Function:	U = X^a * Y^(1-a)
Parameter a:	0.2
Demand for X:	X = (0.2*M)/Px
Demand for Y:	Y = (0.8*M)/Py
Expenditure Funct:	M = U * (Px/0.2)^0.2 * (Py/0.8)^0.8

Question 1

M	2000
Px	2
Ру	5
Х	200
Y	320
U	291.2903

Question 1b

Px	4	
Py	5	
-		
Х	100	
Y	320	
M3	M = 291.290 * (4/0.2)^0.2 * (5/0.8)^	0.8
M3	2297	
CV	297	
Revenue:	200	

Question 2a

Years: Annual cost: Interest rate:	15 28 5%	420	
PV at 0 of 28 million per ye	ar forever:	:	560
PV at 15 of 28 million per y PV at 0 of 28 million per ye	ear, years ar, years ´	16+ 16+	560 269
PV cost of payments 1-15:			291

Question 2b

B 20	million	
PV at 15 of benefits, ye	ears 16+	400
PV at 0 of benefits, year	ars 16+	192
NPV = PV(B) - PV(C)		-98

Does not make sense to clean up the lake; could deliver the benefits at a lower cost.

PV at 15 of benefits, years 16+	B/r
PV at 0 of benefits, years 16+	(B/r)/(1+r)^15

Benefits must be at least large enough to make the following hold: $(B/r)/(1+r)^{15} \ge 291$ $B \ge r * (1+r)^{15} * 291$ $B \ge 30.20999$ million

Check:

B/r	604
PV of B/r	291

Question 3a

The diagram below shows the two cash flows associated with the project. The top flow is for the bond used to finance the project: it generates \$1B immediately but then obligates the city to raise \$50M in interest per year. Since the CV of a \$1 tax is \$1.20, raising \$50M costs the city's citizens \$60M in CV. Hence, the overall cost of each interest payment is really \$60M.

Construction cost at 0:	1000	million
Annual benefits when complete:	100	million
Year benefits begin:	11	
Interest rate:	5%	
PV of bond:		
CV per year:	60	
PV of payments forever:	1200	
Revenue raised at 0:	1000	
Net value (revenue-costs):	-200	
PV of road:		
PV(B) at 10	2000	
PV(B) at 0	1228	
Cost at 0:	1000	
Net value (benefit-cost):	228	
Overall:		
PV of bond:	-200	
PV of road:	228	
Net PV overall:	28	